2022-nc-Widespread increasing vegetation sensitivity to soil moisture

该研究通过可解释机器学习方法,特别是随机森林和SHAP值分析,揭示全球植被叶面积指数(LAI)对土壤湿度的敏感性在半干旱和干旱地区显著增加。这项工作超越了简单的相关性分析,通过隔离影响因素,深入理解水文气候变量如何影响植被。数据包括多源卫星LAI和土壤湿度观测,以及模型模拟数据。结果强调了在气候变化背景下,理解植被响应土壤湿度变化的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今日分享马普所一篇nc期刊

Widespread increasing vegetation sensitivity to soil moisture
https://doi.org/10.1038/s41467-022-31667-9

全球植被的空间分布对全球土壤水的敏感性

explainable machine learning
observation-based leaf area index
hydro-climate anomaly data

在半干旱和干旱地区,LAI对土壤水的敏感性快速增加
LAI的敏感性趋势与多变量的水文气候及气象数据有关

可解释神经网络

Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2021). github 免费看.

应该使用的random forest方法,然后可解释性主要体验在用了the Shapley Additive Explanations (SHAP) method

我们的结果是通过可解释机器学习得出的,它可以从本质上隔离土壤湿度对LAI的影响与其他相关驱动因素的影响,从而超越纯粹的基于相关性的分析。

敏感性分析

the Shapley Additive Explanations (SHAP) method

分析实例code-论文附件

import os
import numpy as np
import sys
# Drawing plots is not supported in sensi.yml environmental
# import matplotlib
# import matplotlib.pyplot as plt
# import statsmodels
# import cartopy.crs as ccrs
import statsmodels.api as sm
from sklearn.ensemble import RandomForestRegressor
import shap
from pathos.multiprocessing import ProcessingPool as Pool
from sklearn.linear_model import LinearRegression, TheilSenRegressor
import regressors
import regressors.stats as regressors_stats
import time
import warnings
warnings.filterwarnings('ignore')

# limit number of threads
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREAD"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"

# plt.rcParams.update({'font.size': 6})

overall sensitivity 全局敏感

the overall and the 3-year block sensitivities

out-of-bag

five long-term satellite-derived LAI datasets and ERA5-Land soil moisture reanalysis24, as well as modeled data from offline simulations from 9 TRENDY LSMs.

归因分析

Attribution Analysis

数据集

extrapolation of in-situ measurements (SoMo.ml)

O, S. & Orth, R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci. Data 8, 170 (2021)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

balabalahoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值