Tensorboard可视化SSD网络结构

本文展示了如何使用PyTorch的SSD模型进行训练,并利用TensorBoard实时记录和可视化网络结构。通过逐层输入随机张量,读者可以理解模型内部结构并监控训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from torch.utils.tensorboard import SummaryWriter
from torch.utils.tensorboard import SummaryWriter
import torch
import torchvision
from torchvision import datasets,transforms
from torch.autograd import Variable
from ssd import SSD

ssd = SSD()
model = ssd.net.module
writer = SummaryWriter()
for i in range(5):
    images = torch.randn(4, 3, 300, 300).cuda()
    writer.add_graph(model, input_to_model=images, verbose=False)
writer.flush()
writer.close()

运行结果截图展示:

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值