Python实现prophet 理论及参数优化


之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观的理解要优化哪些参数,模型自带的可调参数比公式里的还要多一些。

Prophet理论及模型参数介绍

优秀文章参考过讲透一个强大算法模型,Prophet!!
想要还了解理论的,可以参考之前写的文章Python实现Prophet时序预测模型
接下来,直接结合理论公式和代码里的参数进行介绍,看完下面我自己整理的图,你会理解以下问题:

  • 为什么季节性的参数会选择优化傅里叶级数?
  • 不同自动检测的趋势变化点数量会影响什么?
  • 趋势类型决定了模型的什么部分?
  • 节假日影响强度是什么意思?
  • … …

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Python代码完整实现

import pandas as pd
import numpy as np
from prophet import Prophet
from sklearn.model_selection import ParameterGrid
from prophet.diagnostics import cross_validation, performance_metrics
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error,mean_squared_error
from prophet.plot import plot_cross_validation_metric, plot_components  
import matplotlib.pyplot as plt
from datetime import timedelta
import logging
import warnings
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

# 配置日志  
logging.getLogger('prophet').setLevel(logging.WARNING)
logging.getLogger('cmdstanpy').setLevel(logging.WARNING)
from sklearn.model_selection import ParameterGrid
class normal_Prophet:
    def __init__(self):
        self.model = None
        self.freq = '15T'  # 15分钟频率
        
    def  preprocess_data(self, df):
        df  = df.sort_values(by=['xxxx','xxx','xx'])
        cols = df.columns.tolist()
        cols[10:-1]=[f'point_{i}' for i in range(1, 97)] 
        df.columns = cols
        return  df 
        
    def data_row_column(self,cus_df):  #将数据1*96转换成96*1
        cus_df = self.preprocess_data(cus_df)
        hourly_loads  = cus_df.drop(['xxxx','xxx','xx','年月'], axis=1)
        df = hourly_loads[(hourly_loads.cust_id ==20250610)]
        
        # 列名格式为 'point_1', 'point_2', ..., 'point_96'
        load_columns = df.filter(regex="point_").columns
        # 将96点数据转换为长格式
        hourly_loads = df.melt(
            id_vars=["xxxxxxxxxx"],
            value_vars=load_columns,
            var_name="point",
            value_name="load"
        )
        
        # 计算时间戳(每15分钟一个点)
        hourly_loads["point_idx"] = hourly_loads["point"].str.extract("(\d+)").astype(int)
        hourly_loads["hour"] = (hourly_loads["point_idx"] - 1) // 4  # 计算小时(0-23)
        hourly_loads["minute"] = ((hourly_loads["point_idx"] - 1) % 4) * 15  # 计算分钟(0, 15, 30, 45)
        hourly_loads["timestamp"] = hourly_loads["amt_ym"] + pd.to_timedelta(hourly_loads["hour"], unit="h") + pd.to_timedelta(hourly_loads["minute"], unit="m")
        
        # 按时间戳排序
        hourly_loads = hourly_loads.sort_values("timestamp")
        ts_df = hourly_loads[["timestamp", "load"]].set_index("timestamp")
        return ts_df

    def z_score_data(self,ts_df):
        ts_df = self. data_row_column(ts_df)
        # print("时间范围:", ts_df.index.min(), "到", ts_df.index.max())
        # print("实际数据点数:", len(ts_df))
        # print("缺失的日期示例:", ts_df.asfreq('15T').index.difference(ts_df.index)[:5])  # 检查是否有缺失
        
        full_index = pd.date_range(
            start=ts_df.index.min(),
            end=ts_df.index.max(),
            freq='15T'  
        )
        
        ts_df = ts_df.reindex(full_index).interpolate()
        ts_df = ts_df.reset_index()
        ts_df.columns = ['ds','y']
        """
          '''
        窗口1(时间点0-95):计算 mean(y0:y95) 和 std(y0:y95),用于时间点95的Z-score。
        窗口2(时间点1-96):计算 mean(y1:y96) 和 std(y1:y96),用于时间点96的Z-score。
        窗口3(时间点2-97):计算 mean(y2:y97) 和 std(y2:y97),用于时间点97的Z-score。

        滑动窗口:代码中的 rolling() 是滑动(不重复)的,每个点基于最近的96个点计算统计量。
        异常值检测:只有完整的窗口(第96个点开始)会触发Z-score计算,前95个点被跳过。
        适用场景:适合高频数据中连续检测异常值,避免分块导致的边界不连续问题。
        '''
        
        """
        window_size = 96  # 24小时窗口(96个15分钟间隔)
        if len(ts_df) > window_size:
            rolling_mean = ts_df['y'].rolling(window=window_size).mean()
            rolling_std = ts_df['y'].rolling(window=window_size).std()
            ts_df['z_score'] = (ts_df['y'] - rolling_mean) / rolling_std
            ts_df['y'] = np.where(np.abs(ts_df['z_score']) > 4, np.nan, ts_df['y'])
        return ts_df.dropna()


    def add_custom_seasonalities(self, model):
        
        """添加高频数据特有的季节性"""
       # 周周期
        model.add_seasonality(
        name='weekly',
        period=7,
        fourier_order = params['weekly_fourier_order'],
        prior_scale = params['seasonality_weekly_prior_scale']
        
        )
        # 小时周期(覆盖默认的小时季节性) 
        model.add_seasonality(
            name='hourly',
            period=24,         # 24小时
            fourier_order = params['hourly_fourier_order'],  # 捕捉小时级别模式
            prior_scale = params['seasonality_hourly_prior_scale']
         
        )
        # model.add_seasonality(
        #     name='daily_15min',
        #     period=1,           # 1天周期
        #     fourier_order=12,   # 高频数据需要更高阶数
        #     prior_scale=0.5,
        #     mode='additive'
        # )
        
        
        # 可添加业务特定的周期(如半小时、45分钟等)
        # model.add_seasonality(
        #     name='year',
        #     period=24*365,        # 0.5小时
        #     fourier_order=2,
        #     prior_scale=0.1
        # )
        
        return model
    

    def param_grid(self):# 参数网格
        param_grid = { 
        'seasonality_prior_scale':[0.01,1],  #整体季节参数
        'weekly_fourier_order': [3, 7],  #周周期-傅里叶级数
        'seasonality_weekly_prior_scale': [0.1],   #周周期-季节强度

        'hourly_fourier_order': [3,5],    #日周期-傅里叶级数
        'seasonality_hourly_prior_scale': [0.01,0.2],  #日周期-季节强度
            
        'n_changepoints': [5,10],   # 趋势相关-自动检测的趋势变化点数量
        'changepoint_prior_scale': [0.1,0.2],  # 趋势相关-调整趋势灵活度
        
        'holidays_prior_scale':[0.01]  #节假日相关-节假日影响强度
        }
        return param_grid
    
    def fit(self, params,df, holidays_df=None,fut_num = 16 ):
        """训练模型"""
        df_processed = self.z_score_data(df)
        self.model =  Prophet(
        n_changepoints = params['n_changepoints'],
        seasonality_prior_scale= params['seasonality_prior_scale'],
        changepoint_prior_scale= params['changepoint_prior_scale'],
        holidays_prior_scale = params['holidays_prior_scale']
         )
        
        # 添加自定义季节性
        self.model = self.add_custom_seasonalities(self.model)
        
        # 添加节假日效应
        if holidays_df is not None:
            holidays_df['ds'] = pd.to_datetime(holidays_df['ds'])
            self.model.add_country_holidays(country_name='CN')
            self.model.holidays = holidays_df
        self.model.fit(df_processed[:-fut_num] )
        df_cv = cross_validation(
        self.model,
        initial='180 days',
        period='90 days',
        horizon='10 days'
        )
        df_p = performance_metrics(df_cv, rolling_window=1)
        return self.model,df_p['rmse'].mean()
    
    def predict(self, periods=16, freq=None, include_history=True):
        """生成预测"""
        if not self.model:
            raise ValueError("请先训练模型")

        
        freq = freq or self.freq
        future = self.model.make_future_dataframe(
            periods=periods,
            freq=freq,
            include_history=include_history
        )
        forecast = self.model.predict(future)
        return forecast
    

    def plot_components(self, forecast):
        """可视化组件"""
        fig = self.model.plot_components(forecast)
        for ax in fig.axes:
            ax.xaxis.set_major_locator(plt.MaxNLocator(5))
        return fig

    def result_data(self,df,forecast,fut_num = 16):
        da = self.z_score_data(df)
        result = forecast.iloc[-1*fut_num:][['ds','yhat']]

        rmse = np.sqrt(mean_squared_error(da[['y']][-1*fut_num:], result[['yhat']][-1*fut_num:]))
        mse = mean_squared_error(da[['y']][-1*fut_num:], result[['yhat']][-1*fut_num:])
        true_result = da[['ds','y']].iloc[-1*fut_num:]
        true_result[[ 'yhat', 'yhat_lower', 'yhat_upper']] = forecast[['yhat', 'yhat_lower', 'yhat_upper']].iloc[-1*fut_num:].values
        true_result['timestamp'] = true_result['ds'].dt.time.apply(lambda x: x.strftime('%H:%M')) 
        ymd = true_result.ds.values[0].astype('datetime64[D]') 
        true_result['误差'] = np.abs(true_result['y'] -true_result['yhat'] )
        true_result['误差百分比'] = true_result['误差'] /true_result['y']*100
        
        print('预测结果\n',true_result)
        print(f'\n \n预测与真实值之间的RMSE  :{rmse}')
        # #结果可视化
        plt.figure(figsize=(12,6))
        plt.scatter(true_result['timestamp'],true_result['y'],ls=':',c='red',lw=1)
        plt.fill_between(true_result['timestamp'],true_result['yhat_lower'],true_result['yhat_upper'],alpha = 0.15)
        plt.plot(true_result['timestamp'],true_result['yhat'],c='blue')
        plt.xlabel('未来4小时时刻点', size= 15)
        plt.ylabel('实际出力值', size= 15)
        plt.title('Prophet实际出力预测结果', size= 18)
        plt.legend(['出力真实值','预测值上下限','出力预测值'])
        plt.show()
        return true_result
        
if __name__ == '__main__':
    # 数据导入
    RAWcus_df = pd.read_excel("D:\\data.xlsx",engine='openpyxl')   
    cus_df = RAWcus_df.copy()
    cus_df['年月'] = cus_df['xxx'].dt.strftime('%Y-%m')
   
    ##开始模型训练
    normal_Prophet = normal_Prophet()
    holidays = pd.DataFrame({
        'ds': pd.to_datetime(['2023-01-01', '2023-01-22', '2023-04-05']),
        'holiday': ['元旦', '春节', '清明节'],
        'lower_window': -1,
        'upper_window': 1
    })
     # 4. 参数训练
   
    param_grid = normal_Prophet.param_grid()
    best_score = float('inf')
    best_params = {}
    best_params_list = []
    params_list = []
    rmse_list = []
    for params in ParameterGrid(param_grid):
        print('当前训练参数',params)
        params_list.append(params)
        model,current_rmse = normal_Prophet.fit(params,cus_df, holidays_df=holidays)
        rmse_list.append(current_rmse)
        if current_rmse < best_score:
            best_score = current_rmse
            best_params = params
            best_params_list.append(best_params)
            print(f"New best rmse: {best_score:.4f}, Params: {best_params}")
    print('所有参数训练列表',params_list)
    print(f"Optimized Parameters: {best_params}")
    # 导出参数训练过程
    params_jilu = pd.concat([pd.DataFrame(params_list),pd.DataFrame(rmse_list)],axis=1)
    params_jilu.rename(columns={0:'rmse'})
    print(params_jilu.head(3))


    # 5.训练模型
    print("训练模型中...")
    model,bset_rmse = normal_Prophet.fit(best_params,cus_df, holidays_df=holidays)
    
    # 6. 生成预测(预测未来24小时)
    print("生成预测...")
    forecast = normal_Prophet.predict(periods=16)   # 96个15分钟=24小时
    
    # 7. 对比结果
    true_result =normal_Prophet.result_data(cus_df,forecast)
    
    # 8. 可视化结果
    print("生成整体可视化...")
    fig1 = model.plot(forecast)
    fig2 = normal_Prophet.plot_components(forecast)
    plt.show()

结果展示
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

prophet 添加外部数据进行模型优化

大家都熟知prophet 的输入为两列[‘ds’,‘y’]数据,但是 Prophet 模型中整合其他外部数据(如促销活动、天气、经济指标等),可以使用 add_regressor() 方法添加额外的回归变量,从而使模型达到更好的效果。

model.add_regressor('XX', prior_scale=15, mode='additive')  # 重要变量
model.add_regressor('ZZ', prior_scale=0.5, mode='additive')# 次要变量
# prior_scale: 控制正则化强度(默认0.5,值越大影响越大)
# mode: 可选 'additive'(默认)或 'multiplicative'

model.fit(df)
future = model.make_future_dataframe(periods=30) 
#未来外部变量的值需要事先确定在future 中
future = future.merge(
    pd.DataFrame({
        'ds': pd.date_range(start='2020-01-01', periods=395),  # 合并未来30天的外部数据
        'XX': [1 if d.day == 15 else 0 for d in future['ds']],  
        'YY': np.sin(np.linspace(0, 10.5, 395)) * 10 + 25  
    }),
    on='ds',
    how='left'
)
forecast = model.predict(future)

评估回归器影响

# 查看回归器系数
print(model.params['beta'][:, 0])  # 第一个回归器的系数轨迹

# 计算贡献度
regressor_effects = forecast[['ds', 'XX', 'ZZ']].copy()
regressor_effects['XX_effect'] = forecast['trend'] * model.params['beta'][0, 0]
regressor_effects['ZZ_effect'] = forecast['trend'] * model.params['beta'][0, 1]

正常的组件图 (plot_components) 将显示外部变量的影响,由于这里的数据不涉及外部变量,所以这里不和第一部分的参数优化融合在一起。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值