Pytorch安装与环境配置【2024-12-28更新】
前言
经验证DeepinV23可以使用显卡进行Pytorch的学习。本人用的小米的游戏本Redmi G 2024,搭载的显卡是RTX4060,可以跑很多网络了。下面是本人的安装过程,仅供参考。增加了小米Air 13.3 deepin 2025安装pytorch的记录。
1 安装环境
1.1硬件条件
硬件详情如下图所示。
1.2系统环境
操作系统是Deepin V23 正式版,Kernel是6.9。
2 显卡驱动安装
在安装cuda之前非常重要的一步,就是安装NVIDIA独立显卡的闭源驱动,并工作在PRIME模式,这一步是最关键,也是最容易出问题的一步。
1)删除并禁用NVIDIA开源驱动Nouveau
若在安装Deepin的时候没有选择“安装Nvidia闭源驱动”,则不用使用下面的命令删除独立显卡驱动(仅省略本条命令)。
sudo apt autoremove nvidia-*
接下来我们需要编辑blacklist文件来禁用Nouveau:
sudo deepin-editor /etc/modprobe.d/blacklist-nouveau.conf
若没有该文件则创建该文件,也可以直接用管理员权限打开其目录,然后直接创建文本文件,注意文件名与上面的一致。
添加如下内容:
blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0alias nouveau offalias lbm-nouveau off
按住Ctrl+S保存并关闭文件之后,在终端输入以下命令:
sudo update-initramfs -u
此时,卸载并禁用Nvidia驱动就完成了,重启系统来验证是否禁用成功。
在终端中输入下面的命令:
lsmod | grep nouveau
如果没有任何输出则表明禁用成功。
2)安装Nvidia官方驱动
命令行查询自己本机的显卡信息:
lspci|grep -i nvidia
可以看到自己的显卡信息:比如我的就是RTX4060
之后到Nvidia官网驱动下载页面来下载驱动。
![]() |
这里根据自己的实际情况来选择驱动后下载,我使用的是NVIDIA-Linux-x86_64-550.78版。注意自己的下载目录,一般都是~/Downloads或直接打开Deepin文件管理器的下载目录查看文件是否存在,在文件的目录下打开终端,为驱动程序添加可执行权限。
chmod a+x ~/Downloads/NVIDIA-Linux-x86_64-550.107.02.run
这里的文件名根据你的情况来看,或者打NVIDIA后按TAB键自动补全。此时需要执行以下命令关闭图形化界面:
sudo service lightdm stop
之后在黑框界面按组合键ctrl+alt+F2进入tty2终端,登录名和密码即是图形化界面的登录名和密码。之后执行以下命令开始安装驱动:
sudo ~/Downloads/NVIDIA-Linux-x86_64-550.107.02.run -no-opengl-files -no-nouveau-check
-no-opengl-files:只安装驱动文件,不安装OpenGL文件
-no-nouveau-check:安装驱动时不检查NouVeau
安装过程中会出现页面需要选择:
1:安装 DKMP,选择 YES,以后内核更新后,不用手动再次更新驱动;
2:安装32-bits兼容文件,选择Yes和No都可以;
3:安装 Nvidia X-config 允许更新xorg.conf配置文件重启时生效,选择NO(这个很重要!)。
安装完成后使用下面的命令重新启动电脑。
reboot
注意:如果在上面安装过程3:选择了Yes,可能开机无法进入图形化界面,是因为安装Nvidia驱动更新了xorg.conf配置文件,可以外接一个显示器重启,外接显示器可以正常显示图形化界面。或按住组合键ctrl+alt+F2进入tty2终端,删除/etc/X11/xorg.conf,重新安装驱动即可。
如果安装过程 3 选择了 NO,正常启动,输入命令查看驱动信息:
![]() |
nvidia-smi
从上图可以看到,显卡使用率为0,没在工作,显卡及驱动最高可支持到CUDA12.4。
3 软件安装
3.1 cuda安装
1)下载 cuda
cuda安装的软件版本与显卡支持的版本有关,一般等于或低于显卡支持的版本。
cuda版本下载前,最好先看下torch支持到哪个版本,然后再下载相应版,torch支持的版本一般慢于cuda的版本的更新。进入PyTorch官网查看,如下。本人显卡最高支持到cuda12.4,现在pytorch最新支持到12.4版本,所以cuda和cudnn都选择了12.4版本。【截图不再更新】
cuda下载网址:CUDA Toolkit Archive | NVIDIA Developer,如下图红框标出的那个,选这个版本是因为poytorch当时支持的最高版本就是cuda12.4.1。【截图不再更新】
在超级终端进入到cuda文件将要下载存储的目录,输入如下命令:
wget https://developer.download.nvidia.com/compute/cuda/14.1/local_installers/cuda_14.1_550.54.15_linux.run
按Enter键则开始下载。也可以复制下载地址,使用下再工具下载,比如:Motrix
2)安装cuda
进入到cuda下载目录,在该目录打开超级终端,执行如下操作:
chmod +x cuda_12.4.1_550.54.15_linux.run #设置执行权限
sudo sh cuda_12.4.1_550.54.15_linux.run
执行时间有点长等待一段时间后可看到下图:
输入accept并按下Enter键进入如下类似界面
这个界面要注意,因为我们之前已经安装过显卡驱动了,因此此处应该取消勾选Driver,方法是使用上下方向键选择Driver,然后回车(Enter键)即可,最后选到Install,进行安装。安装成功会输出“Summary”类似下图
3)添加环境变量
命令行输入
vim ~/.bashrc
按i键进入编辑模式,在最后加入如下代码,将安装目录加入到环境变量中:
# 添加统一的Cuda路径,以防万一为了方便维护cuda多个版本
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64
按esc后输入:wq保存并退出Vim。
之后输入如下命令来刷新环境变量:
source ~/.bashrc
打开终端,输入以下命令在系统的/usr/local/下创建toolkit14.1的链接
sudo ln -s /usr/local/cuda-12.4/ /usr/local/cuda
此时在终端输入nvcc -V来验证查看当前 cuda 版本。
nvcc -V
显示如下内容则表示安装成功:
3.2 cudnn安装
1)下载 cudnn
官网下载cudnn 这里是需要注册账号登录后才可以下载的。
这里选择好版本(需要跟CUDA12.1相符合),并选择for linux版本。如图所示 红色框内为所选下载包:
下载文件为:cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz
2)安装cudnn
cudnn的安装其实就是复制一些库文件和头文件到cuda中,找到cudnn的下载目录(一般都是在“下载”里面)进行解压缩,然后复制文件即可:
在cudnn的目录输入如下命令:
tar -zxvf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz
之后,进入解压后的目录,复制两个文件夹到CUDA的安装目录下的Inlude和lib64下。文件复制过程也可用管理员权限打开文件管理器操作,但不建议,容易出现破坏系统文件。
sudo cp include/cudnn.h /usr/local/cuda/include/
sudo cp lib/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
接着查看cudnn版本:
cat /usr/local/cuda-12.4/include/cudnn.h
若成功,则显示如下:
![]() |
3.3 Anaconda3安装
你可以根据你的操作系统选择对应的版本到官网下载,但是官网下载龟速,建议到清华大学镜像站下载,又快又省事,我使用的版本是:Anaconda3-2024.06-1-Linux-x86_64.sh
./Anaconda3-2024.06-1-Linux-x86_64.sh
然后就会进到信息页面,类似下图。
![]() |
一路Enter,直到出现下面的选项,同样也有几个选项。
1.Do you accept the license terms? 输入yes
2.下面会问你保存到哪个目录下面,如果默认安装在用户目录,直接enter;自定义目录的话输入你想安装的目录再enter。默认安装在home/xxx/,也可以根据提示更换安装目录,需要认真阅读说明,比如:输入home/xxx/Apps/后再按Enter键,xxx是你的计算机用户名。
![]() |
3.中间询问,you can undo this by running ‘conda init – reverse $SHELL’[yes|no],在此我选择的是no,不喜欢终端里一直有个“(base)”。
下面就要配置一下环境变量
vim ~/.bashrc
export PATH="/home/xxx/Apps/anaconda3/bin:$PATH"
注意一下,中间的是你anaconda安装的目录
source ~/.bashrc
下面测试anaconda安装是否成功,得到如下图,则表明成功安装。
3.4 Pytorch安装
进入PyTorch官网查看,如下。本人显卡最高支持到cuda12.4,如下选择pytorch最新支持到12.4版本【截图不再更新】。
即选择的命令为上图下面的两行。
为提高下载速度增加上海交大conda源地址。
sudo deepin-editor ~/.condarc
将文件的内容替换为如下内容:
default_channels:
- https://mirror.sjtu.edu.cn/anaconda/pkgs/r
- https://mirror.sjtu.edu.cn/anaconda/pkgs/main
custom_channels:
conda-forge: https://mirror.sjtu.edu.cn/anaconda/cloud/
pytorch: https://mirror.sjtu.edu.cn/anaconda/cloud/
channels:
- defaults
方法来自下面的链接:
设置好国内下载源后,在终端输入如下命令,开始安装pytorch:
conda install pytorch torchvision torchaudio pytorch-cuda=12.4
若用国内源一定去掉命令末尾的“-c pytorch -c nvidia”否则不是优先国内源。
国内源问题是有些版本支持不全,请大家慎重选择。实在不行还是用下面的命令:
conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia
但可以选择早上,比如5点多起来安装。玩游戏了的下线了,把网络带宽和流畅体验留给他们,原因你懂的。
安装11.8的话用如下命令:
conda install pytorch torchvision torchaudio cudatoolkit=11.8
不知为何按上面这个命令装出来的不对,运行不了。(小米air13.3,deepin2025,2025-7-1)
然后,采用下面命令
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
一路enter,一路yes
至此整个pytorch环境就配置完成
3.5 pycharm的安装
在Deepin Community 23 正式版上 安装pyCharm很简单直接在应用商店安装即可。
1)点击“New Project”创新新项目;
![]() |
2)假设项目名称为“pythonProject1”;
3)设置Base conda,如下图;
4)设置“Custom environment”如下图然后点击“Create”按钮;
5)编译代码测试如下图,代码附后。
# This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
def print_hi(name):
# Use a breakpoint in the code line below to debug your script.
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
print_hi('PyCharm')
import torch
import torchvision
import scipy.io as sio
import numpy as np
from matplotlib import pyplot as plt
print(torch.cuda.is_available())
print(torch.cuda.device_count())
print(torch.cuda.get_device_name())
x = torch.rand(5,3)
y = torch.rand(5,3)
print(x+y)
print("\nx+y in cuda:\n")
if torch.cuda.is_available():
x = x.cuda()
y = y.cuda()
print(x+y)
4 参考
1)Deepin20.2.4安装Nvidia驱动教程_deepin安装nvidia驱动-CSDN博客
2)Linux下安装pytorch_pytorch linux 安装-CSDN博客