Deepin V23系统中Pytorch安装与环境配置

Pytorch安装与环境配置【2024-12-28更新】

前言

经验证DeepinV23可以使用显卡进行Pytorch的学习。本人用的小米的游戏本Redmi G 2024,搭载的显卡是RTX4060,可以跑很多网络了。下面是本人的安装过程,仅供参考。增加了小米Air 13.3 deepin 2025安装pytorch的记录。

    1 安装环境

     1.1硬件条件

硬件详情如下图所示。

     1.2系统环境

操作系统是Deepin V23 正式版,Kernel是6.9。

    2 显卡驱动安装

       在安装cuda之前非常重要的一步,就是安装NVIDIA独立显卡的闭源驱动,并工作在PRIME模式,这一步是最关键,也是最容易出问题的一步。

     1)删除并禁用NVIDIA开源驱动Nouveau

若在安装Deepin的时候没有选择“安装Nvidia闭源驱动”,则不用使用下面的命令删除独立显卡驱动(仅省略本条命令)。

sudo apt autoremove nvidia-*

接下来我们需要编辑blacklist文件来禁用Nouveau:

sudo deepin-editor /etc/modprobe.d/blacklist-nouveau.conf

若没有该文件则创建该文件,也可以直接用管理员权限打开其目录,然后直接创建文本文件,注意文件名与上面的一致。

添加如下内容:

blacklist nouveau

blacklist lbm-nouveau

options nouveau modeset=0alias nouveau offalias lbm-nouveau off

按住Ctrl+S保存并关闭文件之后,在终端输入以下命令:

sudo update-initramfs -u

此时,卸载并禁用Nvidia驱动就完成了,重启系统来验证是否禁用成功。

在终端中输入下面的命令:

lsmod | grep  nouveau

如果没有任何输出则表明禁用成功。

    2)安装Nvidia官方驱动

命令行查询自己本机的显卡信息:

lspci|grep -i nvidia

可以看到自己的显卡信息:比如我的就是RTX4060

之后到Nvidia官网驱动下载页面来下载驱动。

这里根据自己的实际情况来选择驱动后下载,我使用的是NVIDIA-Linux-x86_64-550.78版。注意自己的下载目录,一般都是~/Downloads或直接打开Deepin文件管理器的下载目录查看文件是否存在,在文件的目录下打开终端,为驱动程序添加可执行权限。

chmod a+x ~/Downloads/NVIDIA-Linux-x86_64-550.107.02.run

这里的文件名根据你的情况来看,或者打NVIDIA后按TAB键自动补全。此时需要执行以下命令关闭图形化界面:

sudo service lightdm stop

之后在黑框界面按组合键ctrl+alt+F2进入tty2终端,登录名和密码即是图形化界面的登录名和密码。之后执行以下命令开始安装驱动:

sudo ~/Downloads/NVIDIA-Linux-x86_64-550.107.02.run -no-opengl-files -no-nouveau-check

-no-opengl-files:只安装驱动文件,不安装OpenGL文件

-no-nouveau-check:安装驱动时不检查NouVeau

安装过程中会出现页面需要选择:

1:安装 DKMP,选择 YES,以后内核更新后,不用手动再次更新驱动;

2:安装32-bits兼容文件,选择Yes和No都可以;

3:安装 Nvidia X-config 允许更新xorg.conf配置文件重启时生效,选择NO(这个很重要

安装完成后使用下面的命令重新启动电脑。

reboot

注意:如果在上面安装过程3:选择了Yes,可能开机无法进入图形化界面,是因为安装Nvidia驱动更新了xorg.conf配置文件,可以外接一个显示器重启,外接显示器可以正常显示图形化界面。或按住组合键ctrl+alt+F2进入tty2终端,删除/etc/X11/xorg.conf,重新安装驱动即可。

如果安装过程 3 选择了 NO,正常启动,输入命令查看驱动信息:

nvidia-smi

从上图可以看到,显卡使用率为0,没在工作,显卡及驱动最高可支持到CUDA12.4。

    3 软件安装

    3.1 cuda安装

     1)下载 cuda

cuda安装的软件版本与显卡支持的版本有关,一般等于或低于显卡支持的版本。

cuda版本下载前,最好先看下torch支持到哪个版本,然后再下载相应版,torch支持的版本一般慢于cuda的版本的更新。进入PyTorch官网查看,如下。本人显卡最高支持到cuda12.4,现在pytorch最新支持到12.4版本,所以cuda和cudnn都选择了12.4版本。【截图不再更新】

cuda下载网址:CUDA Toolkit Archive | NVIDIA Developer,如下图红框标出的那个,选这个版本是因为poytorch当时支持的最高版本就是cuda12.4.1。【截图不再更新】

       在超级终端进入到cuda文件将要下载存储的目录,输入如下命令:

wget https://developer.download.nvidia.com/compute/cuda/14.1/local_installers/cuda_14.1_550.54.15_linux.run

       按Enter键则开始下载。也可以复制下载地址,使用下再工具下载,比如:Motrix

      2)安装cuda

       进入到cuda下载目录,在该目录打开超级终端,执行如下操作:

chmod +x cuda_12.4.1_550.54.15_linux.run #设置执行权限

sudo sh cuda_12.4.1_550.54.15_linux.run

执行时间有点长等待一段时间后可看到下图:

输入accept并按下Enter键进入如下类似界面

这个界面要注意,因为我们之前已经安装过显卡驱动了,因此此处应该取消勾选Driver,方法是使用上下方向键选择Driver,然后回车(Enter键)即可,最后选到Install,进行安装。安装成功会输出“Summary”类似下图

     3)添加环境变量

命令行输入

vim ~/.bashrc

按i键进入编辑模式,在最后加入如下代码,将安装目录加入到环境变量中:

# 添加统一的Cuda路径,以防万一为了方便维护cuda多个版本

export PATH=/usr/local/cuda/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

export CUDA_HOME=$CUDA_HOME:/usr/local/cuda

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64

按esc后输入:wq保存并退出Vim。

之后输入如下命令来刷新环境变量:

source ~/.bashrc

打开终端,输入以下命令在系统的/usr/local/下创建toolkit14.1的链接

sudo ln -s /usr/local/cuda-12.4/ /usr/local/cuda

此时在终端输入nvcc -V来验证查看当前 cuda 版本。

nvcc -V

显示如下内容则表示安装成功:

    3.2 cudnn安装

     1)下载 cudnn

官网下载cudnn 这里是需要注册账号登录后才可以下载的。

这里选择好版本(需要跟CUDA12.1相符合),并选择for linux版本。如图所示 红色框内为所选下载包:

下载文件为:cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz

     2)安装cudnn

cudnn的安装其实就是复制一些库文件和头文件到cuda中,找到cudnn的下载目录(一般都是在“下载”里面)进行解压缩,然后复制文件即可:

在cudnn的目录输入如下命令:

tar -zxvf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz

之后,进入解压后的目录,复制两个文件夹到CUDA的安装目录下的Inlude和lib64下。文件复制过程也可用管理员权限打开文件管理器操作,但不建议,容易出现破坏系统文件。

sudo cp include/cudnn.h /usr/local/cuda/include/

sudo cp lib/libcudnn* /usr/local/cuda/lib64/

sudo chmod a+r /usr/local/cuda/include/cudnn.h

sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

接着查看cudnn版本:

cat /usr/local/cuda-12.4/include/cudnn.h

若成功,则显示如下:

    3.3 Anaconda3安装

你可以根据你的操作系统选择对应的版本到官网下载,但是官网下载龟速,建议到清华大学镜像站下载又省事,我使用的版本是:Anaconda3-2024.06-1-Linux-x86_64.sh

./Anaconda3-2024.06-1-Linux-x86_64.sh

然后就会进到信息页面,类似下图。

 一路Enter,直到出现下面的选项,同样也有几个选项。

1.Do you accept the license terms?  输入yes

2.下面会问你保存到哪个目录下面,如果默认安装在用户目录,直接enter;自定义目录的话输入你想安装的目录再enter。默认安装在home/xxx/,也可以根据提示更换安装目录,需要认真阅读说明,比如:输入home/xxx/Apps/后再按Enter键,xxx是你的计算机用户名。

3.中间询问,you can undo this by running ‘conda init – reverse $SHELL’[yes|no],在此我选择的是no,不喜欢终端里一直有个“(base)

下面就要配置一下环境变量

vim ~/.bashrc

export PATH="/home/xxx/Apps/anaconda3/bin:$PATH"

注意一下,中间的是你anaconda安装的目录

source ~/.bashrc

下面测试anaconda安装是否成功,得到如下图,则表明成功安装。

    3.4 Pytorch安装

进入PyTorch官网查看,如下。本人显卡最高支持到cuda12.4,如下选择pytorch最新支持到12.4版本【截图不再更新】。

即选择的命令为上图下面的两行。

为提高下载速度增加上海交大conda源地址。

      sudo deepin-editor ~/.condarc

将文件的内容替换为如下内容:

default_channels:
  - https://mirror.sjtu.edu.cn/anaconda/pkgs/r
  - https://mirror.sjtu.edu.cn/anaconda/pkgs/main
custom_channels:
  conda-forge: https://mirror.sjtu.edu.cn/anaconda/cloud/
  pytorch: https://mirror.sjtu.edu.cn/anaconda/cloud/
channels:
  - defaults

方法来自下面的链接:

上海交通大学 Linux 用户组 软件源镜像服务

设置好国内下载源后,在终端输入如下命令,开始安装pytorch:

conda install pytorch torchvision torchaudio pytorch-cuda=12.4

若用国内源一定去掉命令末尾的“-c pytorch -c nvidia”否则不是优先国内源。

国内源问题是有些版本支持不全,请大家慎重选择。实在不行还是用下面的命令:

conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia

但可以选择早上,比如5点多起来安装。玩游戏了的下线了,把网络带宽和流畅体验留给他们,原因你懂的。

安装11.8的话用如下命令:

conda install pytorch torchvision torchaudio cudatoolkit=11.8

不知为何按上面这个命令装出来的不对,运行不了。(小米air13.3,deepin2025,2025-7-1)

然后,采用下面命令

 pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

一路enter,一路yes

至此整个pytorch环境就配置完成

    3.5 pycharm的安装

在Deepin Community 23 正式版上 安装pyCharm很简单直接在应用商店安装即可。

1)点击“New Project”创新新项目;

2)假设项目名称为“pythonProject1”;

3)设置Base conda,如下图;

4)设置“Custom environment”如下图然后点击“Create”按钮;

5)编译代码测试如下图,代码附后。

# This is a sample Python script.

# Press Shift+F10 to execute it or replace it with your code.

# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.

def print_hi(name):

    # Use a breakpoint in the code line below to debug your script.

    print(f'Hi, {name}')  # Press Ctrl+F8 to toggle the breakpoint.

# Press the green button in the gutter to run the script.

if __name__ == '__main__':

    print_hi('PyCharm')

    import torch

    import torchvision

    import scipy.io as sio

    import numpy as np

    from matplotlib import pyplot as plt

    print(torch.cuda.is_available())

    print(torch.cuda.device_count())

    print(torch.cuda.get_device_name())

    x = torch.rand(5,3)

    y = torch.rand(5,3)

    print(x+y)

    print("\nx+y in cuda:\n")

    

     if torch.cuda.is_available():

        x = x.cuda()

        y = y.cuda()

    

     print(x+y)

4 参考

1)Deepin20.2.4安装Nvidia驱动教程_deepin安装nvidia驱动-CSDN博客

2)Linux下安装pytorch_pytorch linux 安装-CSDN博客

3)Deepin20.2.4安装Pytorch GPU版本_deepin 版本-CSDN博客

4)Ubuntu系统下配置PyTorch环境_ubuntu配置pytorch-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值