永磁同步电机谐波抑制算法(5)——传统比例-积分-谐振(PIR)调节器谐波电流抑制存在的问题以及改进办法

文章围绕永磁同步电机谐波抑制展开,指出采用谐振(R)调节器存在问题,如离散化影响稳态性能、系统延时影响谐波抑制效果。提出消除数字控制延时和精确离散化的策略提高其效果,并进行仿真对比分析,还探讨了谐振R调节器带宽对谐波抑制的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.问题的引出

永磁同步电机谐波抑制算法(3)——基于比例积分谐振/PIR调节器的谐波电流抑制策略仿真及多同步旋转坐标系谐波抑制的改进 - 知乎

在这一篇文章中,讲到了用PIR调节器也就是比例-积分-谐振调节器进行谐波抑制。但是在实际的控制系统中,采用谐振(Resonance,R)调节器是存在很大的问题的。

在稳态性能方面,由于离散化的影响,R调节器对设定的谐振频率以及系统控制频率较为敏感。在电机控制里面的话,可能大家第一次接触到R调节器,应该是在袁雷老师的电机控制教材里。如下图所示,袁雷老师教材中对R调节器采用“双线性变换”。

对R调节器采用“双线性变换”的话,得到的R调节器的公式会相对简单,但是它的缺点也非常非常明显。

当系统控制频率越低,设定的谐振频率越高时,离散化导致的谐振频率偏移就越明显,谐波抑制能力越弱

参考文献:YEPES A G,FREIJEDO F D,DOVAL-GANDOY J,et al.Effects of discretization methods on the performance of resonant controllers[J] . IEEE Transactions on Power Electronics,2010,25(7):1692-1712.

比如说下图中,我设置这台永磁同步电机里面具有5、7次谐波电流,在1200r/min的时候,R调节器的谐波抑制效果非常差!此时对应的转矩脉动也非常大!

但是当转速降低到600r/min时,转矩明显就是一条直线了,说明转矩脉动被有效抑制了。

传统PIR调节器谐波抑制策略的仿真波形(三相电流、转矩、转速波形)

出现此现象的原因:首先明确5、7次谐波在d-q坐标系下产生的是6次谐波电流。我这台电机是4对极,因此在1200r/min情况下对应的基波电流频率就是80Hz,那么6倍频的谐波电流频率就是480Hz。而在600r/min情况下对应的谐波电流频率就是240Hz。

前面说了对R调节器采用“双线性变换”的缺点就是,设定的谐振频率越高时,离散化导致的谐振频率偏移就越明显,谐波抑制能力越弱。600r/min对应的谐振频率就是240Hz,而1200r/min对应的谐振频率是480Hz,所以R调节器在1200r/min下的谐波抑制效果就是远不如600r/min下的谐波抑制效果。

包括在实验中也是会出现这个问题。下图红蓝黄就是ABC三相电流波形,转速升高之后R调节器的谐波抑制效果大幅减弱,甚至使三相电流发生非常严重的畸变

2.提高谐振(Resonance,R)调节器谐波抑制效果的策略

除了上述提到的离散化对R调节器的影响,电机控制系统中还存在系统延时,这同样会对R调节器产生比较大的影响。因此我们需要通过(1)消除数字控制延时,(2)精确的离散化,来提高R调节器的谐波抑制效果。

2.1消除数字控制延时

永磁同步电机谐波抑制算法(4)——多同步旋转坐标系谐波电流抑制存在的问题以及改进办法 - 知乎

在这篇文章中,我以及给了数字延时补偿的参考文献以及对应的公式,感兴趣的再翻看这篇知乎就好了。

无数字延时补偿的PIR调节器谐波抑制策略的仿真波形(三相电流、转矩、转速波形)

 

 

有数字延时补偿的PIR调节器谐波抑制策略的仿真波形(三相电流、转矩、转速波形)

 

可以看到:在加入数字延时补偿之后,1200r/min下的转矩脉动有了一定的减小

2.2精确的离散化

不同的离散化会对R调节器的伯德图参数不同的影响。下图是采用双线性变换、预畸双线性变换(Tustin with prewarping)和一阶保持(First order hold,FOH)三种离散化方法对R调节器进行离散化后得到的伯德图。在这三种方法中,只有采用双线性变换会使R调节器的谐振频率发生偏移。

 

我下面打算用预畸双线性变换对R调节器进行离散化。相关的详细公式推导可以见下面这篇知乎,大佬已经把R调节器的离散化推导的十分详细了。

有木有大神懂PR控制器的?? - 知乎一、 PR控制器的理论来源1. 历史背景《信号与系统》课程中介绍了一些典型的理想信号类型:冲激信号、阶跃…icon-default.png?t=N7T8https://www.zhihu.com/question/63132825/answer/3265824932

 得到离散化的R调节器的传递函数之后,还要把它写成误差输入以及输出的形式。大佬的知乎中也进行了详细的举例。我这里就是用大佬的方法重新推导了一下。

搭建好的PIR电流环调节器如下图所示。

3.仿真对比分析

3.1仿真参数

Tpwm = 1e-4;%开关周期

Tspeed = 5e-4;%转速采样周期

Ts = 5e-7;%仿真步长

Pn = 4;%电机极对数

Ls = 8.5e-3;%定子电感,采用隐极的,Ld=Lq=Ls

Ld = Ls;

Lq = Ls;

Rs = 3;%定子电阻

flux = 0.1688;%永磁体磁链

B = 0.0004924;

J = 0.0013;

Vdc = 311;%直流母线电压

iqmax = 20;%额定电流

fc = 500;%电流环PI调节器的带宽

Kr = 500;%电流环R调节器的谐振增益

wc = 10;%电流环R调节器的谐振带宽

在仿真里面,我是自己搭建了看了五七次谐波反电势的PMSM数学模型,把我永磁体五七次谐波磁链均设置为永磁体基波磁链的1%。仿真工况是:初始参考转速为1200r/min,带10Nm负载;0.3s突加5Nm负载;0.5s的参考转速设置为600r/min。

3.2仿真的大致波形对比

传统PI调节器的仿真波形(三相电流、转矩、转速波形)
传统PIR调节器的仿真波形(三相电流、转矩、转速波形)
具有数字延时补偿的PIR调节器的仿真波形(三相电流、转矩、转速波形)
具有数字延时补偿且进行精确离散化的PIR调节器的仿真波形(三相电流、转矩、转速波形)

从上面的仿真波形来看,可以得到以下几个结论。

  1. 在600r/min时,三种PIR调节器都可以对谐波电流进行有效抑制,进而达到转矩脉动抑制的效果。
  2. 在1200r/min时,传统PIR调节器的谐波抑制效果非常差,甚至不如直接采用PI调节器对电流进行控制;具有数字延时补偿且进行精确离散化的PIR调节器具有最好的谐波抑制效果,其对应的转矩脉动也是最小的

3.3仿真的相电流FFT分析对比

 

传统PIR调节器的相电流FFT分析(1200r/min,15Nm)
具有数字延时补偿的PIR调节器的相电流FFT分析(1200r/min,15Nm)
具有数字延时补偿且进行精确离散化的PIR调节器的的相电流FFT分析(1200r/min,15Nm)

从1200r/min的仿真波形来看,具有数字延时补偿且进行精确离散化的PIR调节器具有最好的谐波抑制效果,其相电流THD都只有0.83%,这要由于传统PIR调节器的4.82和具有数字延时补偿PIR调节器的0.99%。

3.4精确离散化前后PIR调节器仿真对比

感觉经过数字延时补偿之后,是否进行精确的离散化好像影响不太大哎?我下面再把1200r/min的工况给拉长来看看。

具有数字延时补偿的PIR调节器的仿真波形(三相电流、转矩、转速波形)
具有数字延时补偿且进行精确离散化的PIR调节器的仿真波形(三相电流、转矩、转速波形)
具有数字延时补偿的PIR调节器的相电流FFT分析(1200r/min,10Nm)
具有数字延时补偿且进行精确离散化的PIR调节器的的相电流FFT分析(1200r/min,10Nm)

从上述的仿真波形来看,具有数字延时补偿且进行精确离散化的PIR调节器的效果还是很好的。相对于未经过精确离散化的PIR调节器而言,经过精确离散化的PIR调节器的谐波抑制效果更好,而且谐波抑制的速度也更快,很快就把谐波抑制掉了。

4.谐振R调节器带宽wc对谐波抑制的影响

这里仍然参考上面这篇知乎。

有木有大神懂PR控制器的?? - 知乎一、 PR控制器的理论来源1. 历史背景《信号与系统》课程中介绍了一些典型的理想信号类型:冲激信号、阶跃…icon-default.png?t=N7T8https://www.zhihu.com/question/63132825/answer/3265824932

从跟这个伯德图可以看到,wc越大的话,那么谐振调节器具有高增益的范围就越大。那么这样一来话,就算由于不精确的离散化导致谐振调节器的谐振频率发生了偏移,那我们也可以通过增大wc,来使得谐振调节器抑制掉谐振频率周边的谐波

 

但是wc越大,也说明R调节器越容易受到谐振频率附近的其他频率的信号干扰。我上文取得wc是10,下面我把wc改成2看看效果。

wc=2,未进行精确离散化的PIR调节器的仿真波形(三相电流、转矩、转速波形)
wc=2,进行精确离散化的PIR调节器的仿真波形(三相电流、转矩、转速波形)
未进行精确离散化的PIR调节器的相电流FFT分析(1200r/min,10Nm,wc=2)
进行精确离散化的PIR调节器的的相电流FFT分析(1200r/min,10Nm,wc=2)

可以看到wc从10减小到2之后,未进行精确离散化的PIR调节器的谐波抑制效果大打折扣。

相当于是说,由于未进行精确离散化,所以R调节器的谐振频率偏离了我们期望的谐振频率,但是我们如果取wc=10的话,那么R调节器的带宽就会很大,这个带宽大到刚好把我们期望的谐振频率给囊括进来了。

而wc=2的话,相当于R调节器的带宽里涉及的频率并不包括我们期望的谐振频率,所以这时候的谐波抑制效果就非常差了。

<think>好的,我现在需要回答用户关于MMC(模块化多电平换流器)中PI、PR、PIR控制结构的改进或组合的问题,并提供一些可行且容易实现的改进方法。用户之前已经询问过DSOGI的频率自适应能力,现在可能是在研究MMC的控制策略,特别是环流抑制或其他相关控制环节中的控制器设计。 首先,我需要回忆一下MMC控制中常用的控制器类型:PI(比例积分)、PR(比例谐振)、PIR比例积分谐振)。这些控制器在交流系统中各有优缺点。用户希望了解如何改进这些结构或者它们的组合,来提升控制性能。需要确保建议的方法可行且容易实现,可能用户是工程师或研究生,需要实际应用的方案。 接下来,我需要整理这些控制器的特点: - PI控制器在直流信号和低频跟踪中表现良好,但对交流信号尤其是特定频率的谐波跟踪能力不足。 - PR控制器在特定频率(如基波、谐波频率)处有高增益,能无静差跟踪交流信号,但对频率偏移敏感。 - PIR控制器结合了PI和PR,可能同时处理直流和交流分量,但参数调整可能复杂。 然后,用户提到的改进方法可能包括结构上的调整、组合使用、参数优化、或者结合其他技术(如自适应控制、重复控制等)。需要确保方法容易实现,不需要复杂的计算或硬件改动。 可能的改进方向: 1. **PR+PIR的并联结构**:用于同时抑制多个频率的谐波,比如环流中的2次和4次谐波。 2. **加入频率自适应机制**:类似之前的DSOGI,让PR或PIR控制器谐振频率自适应变化,应对电网频率波动。 3. **改进的准PR控制器**:通过调整带宽来增强对频率偏移的鲁棒性。 4. **PI与PR的串联或并联组合**:结合PI的低频跟踪和PR的谐波抑制能力。 5. **重复控制与PR的结合**:重复控制器处理周期性扰动,PR处理特定谐波。 6. **参数优化方法**:如使用遗传算法、粒子群优化等智能算法来调整控制器参数,提高动态响应。 需要逐一分析这些方法的可行性、实现步骤、优缺点,以及可能的应用场景。例如,频率自适应的PR控制器需要实时调整谐振频率,可以通过锁相环或DSOGI提供的频率反馈来实现,这可能相对容易,因为用户之前已经接触过DSOGI,可能已有频率自适应的模块可用。 另外,需要注意避免过于复杂的结构,比如多谐振控制器的参数整定可能困难,而简单的并联结构可能更容易实现。同时,可能需要考虑数字控制中的实现问题,如离散化方法、计算资源等。 最后,组织这些思路,分点说明每种改进方法的原理、实现步骤、优点和注意事项,确保用户能够理解并应用。可能需要使用示例或公式来辅助说明,比如准PR控制器的传递函数,或者并联结构的框图。</think>针对MMC(模块化多电平换流器)中环流抑制或电压/电流控制的需求,对传统的**PI、PR、PIR控制器**进行改进或组合,可以有效提升系统动态响应、谐波抑制能力和鲁棒性。以下是几种**可行且易于实现**的改进方法,结合实际工程经验进行说明: --- ### **1. 准PR控制器(Quasi-PR)改进:增强频率适应性** #### **问题背景**: 传统PR控制器谐振频率处增益极高,但对电网频率偏移敏感(如±0.5Hz偏移会导致性能下降)。 #### **改进方法**: 将理想PR控制器的传递函数修改为: $$ G_{\text{Quasi-PR}}(s) = K_p + \frac{2K_r\omega_c s}{s^2 + 2\omega_c s + \omega_0^2} $$ - $\omega_0$:目标谐振频率(如100π rad/s对应50Hz) - $\omega_c$:带宽调节参数(一般取5~15 rad/s) #### **优势**: - 在$\omega_0 \pm \omega_c$范围内保持高增益,允许±2Hz频率波动仍有效跟踪。 - 工程实现简单,仅需在原PR代码中修改传递函数系数。 #### **应用场景**: - 电网频率波动环境下的环流谐波抑制(如2次、4次谐波)。 --- ### **2. PI与PR并联结构:兼顾直流与交流分量** #### **问题背景**: MMC环流中既含直流分量(由子模块电容电压不均衡引起),也含低频交流谐波(如2次谐波)。 #### **改进方法**: 将PI控制器抑制直流分量)与PR控制器抑制交流谐波)**并联**: $$ G_{\text{PI+PR}}(s) = \underbrace{K_p + \frac{K_i}{s}}_{\text{PI}} + \underbrace{\frac{K_r s}{s^2 + \omega_0^2}}_{\text{PR}} $$ #### **实现步骤**: 1. 单独设计PI参数($K_p, K_i$)以稳定直流分量。 2. 单独设计PR参数($K_r$)以抑制2次谐波。 3. 在控制回路中直接叠加两者输出。 #### **优势**: - 结构简单,无需复杂交互设计。 - 可扩展为多PR并联(抑制多频率谐波)。 --- ### **3. PIR控制器优化:加入积分抗饱和** #### **问题背景**: 传统PIR控制器比例-积分-谐振)在动态过程中可能因积分饱和导致超调。 #### **改进方法**: 在PIR结构中**加入抗饱和机制**: 1. 对积分项进行钳位:限制积分器输出范围。 2. 采用条件积分(仅在误差小于阈值时激活积分)。 #### **传递函数示例**: $$ G_{\text{PIR}}(s) = K_p + \frac{K_i}{s} + \frac{K_r s}{s^2 + \omega_0^2} $$ **抗饱和实现**(伪代码): ```c if (|error| < threshold) { integral += K_i * error * dt; } else { integral = clamp(integral, max_limit); } ``` #### **优势**: - 避免启动或突变过程中的积分饱和问题- 保持对稳态误差的消除能力。 --- ### **4. 重复控制与PR串联:抑制周期性扰动** #### **问题背景**: MMC子模块开关动作会引入周期性扰动(如开关频率附近的谐波)。 #### **改进方法**: 将重复控制器(RC)与PR控制器**串联**,利用RC抑制宽频谱周期性扰动,PR针对特定谐波补偿: $$ G_{\text{RC+PR}}(s) = \underbrace{\frac{Q(s)e^{-sT}}{1 - Q(s)e^{-sT}}}_{\text{重复控制}} \cdot \underbrace{\left(K_p + \frac{K_r s}{s^2 + \omega_0^2}\right)}_{\text{PR}} $$ - $Q(s)$:低通滤波器(如$Q(s) = \frac{1}{0.001s + 1}$) - $T$:扰动周期(通常为电网基波周期0.02s)。 #### **优势**: - 对MMC开关次谐波抑制效果显著。 - PR控制器可针对性增强对2次环流谐波抑制--- ### **5. 基于频率自适应的PR控制器(结合DSOGI)** #### **问题背景**: 当电网频率波动时,固定频率PR控制器谐波抑制能力下降。 #### **改进方法**: 利用DSOGI(双二阶广义积分器)实时跟踪电网频率$f$,动态调整PR控制器谐振频率$\omega_0 = 2\pi f$: 1. DSOGI提供频率反馈$\hat{f}$。 2. 更新PR控制器谐振频率参数: $$ \omega_0 = 2\pi \hat{f} \quad (\text{例如2次谐波对应} \omega_0 = 4\pi \hat{f}) $$ #### **实现框图**: ``` DSOGI频率检测 → 自适应更新PR的ω₀ → PR控制器 ``` #### **优势**: - 解决频率波动导致的谐波抑制失效问题- 与已有DSOGI模块兼容,无需额外硬件。 --- ### **6. 智能优化算法调参(如遗传算法)** #### **问题背景**: PI/PR/PIR参数整定复杂,依赖经验试错。 #### **改进方法**: 1. 建立MMC环流抑制的数学模型。 2. 定义优化目标(如超调量<5%、调节时间<0.1s、谐波衰减率>20dB)。 3. 使用遗传算法(GA)或粒子群优化(PSO)搜索最优参数组合。 #### **示例(MATLAB代码片段)**: ```matlab costFunction = @(params) simulateMMC(params); % 定义仿真代价函数 options = optimoptions('ga', 'PopulationSize', 50); [optParams, minCost] = ga(costFunction, 3, [], [], [], [], lb, ub, [], options); ``` #### **优势**: - 自动寻找全局最优参数,减少人工调试时间。 - 可离线计算后直接烧录至控制器--- ### **总结:改进方法对比与推荐** | **方法** | **复杂度** | **实现难度** | **适用场景** | |-------------------------|------------|--------------|----------------------------| | 准PR控制器 | 低 | 易 | 频率波动较小的电网 | | PI+PR并联 | 低 | 易 | 直流+交流混合扰动 | | PIR抗饱和优化 | 中 | 中 | 动态过程要求严格的系统 | | 重复控制+PR串联 | 高 | 较难 | 高频开关噪声抑制 | | 频率自适应PR(DSOGI) | 中 | 中 | 海上风电等频率波动场景 | | 智能算法调参 | 高 | 较难 | 参数敏感性高的复杂系统 | **推荐优先尝试**: 1. **准PR控制器改进**(代码改动最小,效果显著) 2. **PI+PR并联结构**(硬件无需修改,适合混合扰动场景) 3. **频率自适应PR**(结合已有DSOGI模块,提升鲁棒性) 实际工程中建议通过RT-Lab或PLECS仿真验证后再进行硬件测试,重点关注控制器对THD(总谐波畸变率)和动态响应的改善效果。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

烦恼归林

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值