
图像分类项目实战
文章平均质量分 83
原价299.9,限时199.9🔥火爆订阅中(五日后恢复原价),包含了基于深度学习模型的图像分类预测方法,例如VGG、ResNet、MobileNet、GoogleNet、DenseNet、ShuffleNet、Inceptionv3等经典模型,包含项目原理以及源码,每个项目实例都附带有完整的代码。
海洋 之心
图神经网络-大数据-推荐系统研究者,专注于计算机领域前沿技术的分享等人工智能算法研究工作
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【图像分类PyQt5】 教程 专栏《导航目录贴》带你深入学习图像分类实战经验
本专栏整理了《图像分类实战案例》,内包含了各种不同的基于深度学习模型的图像分类预测方法,例如VGG、ResNet、MobileNet、GoogleNet、DenseNet、ShuffleNet、Inceptionv3等经典模型,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。原创 2023-04-04 21:59:29 · 454 阅读 · 0 评论 -
ValueError: The last dimension of the inputs to `Dense` should be defined. Found `None`.
表示我们不使用模型原有的顶层全连接层,而是打算添加自己的层。之后,我们添加了一个 Flatten 层(如果需要)和一些 Dense 层来构建自定义的分类器。最后,我们创建了一个包含这些自定义层的新模型,并准备它进行编译和训练。我有一个代码来加载VGGFace预训练的ResNet模型,并将其导出为tensorflow服务格式。这里的重点是确保输入层的尺寸与您的数据相匹配,并且在模型的其余部分也要保持一致。允许用户定义模型的一些关键参数,包括输入张量的形状 (在这段代码中,我们首先定义了输入形状 (原创 2024-01-09 12:24:59 · 616 阅读 · 0 评论 -
RuntimeError: Error(s) in loading state_dict for ResNet: Unexpected key(s) in state_dict: “bn1.num
在这个特定的情况下,错误信息中提到了多个“num_batches_tracked”键。这类键在某些 PyTorch 版本中存在,而在其他版本中可能不存在。方法会加载所有匹配的键,而忽略任何不匹配的键,从而避免了这个错误。但是,这种方法应谨慎使用,因为它可能掩盖模型结构和状态字典之间的不一致问题。这样做会使得 PyTorch 忽略不匹配的键,只加载那些与模型结构相匹配的键。这通常发生在模型的结构和要加载的状态字典不完全匹配时。解决这个问题的一个常见方法是在加载状态字典之前,明确地忽略不匹配的键。原创 2024-01-09 12:16:17 · 1888 阅读 · 0 评论 -
PyQt5+ResNet实现手写数字识别GUI
本项目旨在使用PyQt5和ResNet模型创建一个图形用户界面应用程序,用于手写数字识别。用户可以在GUI界面中手写数字,然后通过点击上传图片按钮进行数字识别。该应用程序使用ResNet模型进行数字分类,可以准确地识别用户输入的数字,并将识别结果显示在GUI界面上。原创 2023-04-05 15:31:37 · 916 阅读 · 0 评论 -
图像分类预测项目案例数据集介绍
MNIST数据集是一个广泛使用的手写数字识别数据集,由70,000张28x28像素的灰度图像组成,其中60,000个图像用作训练数据,10,000个图像用作测试数据。每个图像都标记有0到9之间的一个数字,表示图像中所代表的手写数字。原创 2023-04-05 12:53:46 · 201 阅读 · 0 评论 -
PyQt5+VGG实现手写数字识别GUI
本项目旨在使用PyQt5和VGG模型创建一个GUI应用程序,用于手写数字识别。用户可以在GUI界面中上传一个手写数字,并通过点击上传图片按钮来进行数字识别。该应用程序使用VGG模型进行数字分类,并将识别结果显示在GUI上。原创 2023-04-04 20:46:46 · 703 阅读 · 0 评论