今日总结:
1、完全背包问题(求价值和最大)
(1)二维dp定义(当一道题可以抽象成这种形式就是完全背包)
有N件物品和一个最大容量为W的背包。第i件物品的重量是weight[i],其价值是value[i],每件物品都有无限个(与01背包的不同,01背包只有一个,只有放与不放),求解哪些物品装入背包物品价值总和最大
(2)确定dp数组下标:
dp[i][j]:表示在容量为j情况下,在物品[0,i]中选择若干物品,价值总和最大
(3)确定递推公式(状态转移方程)
分成三种情况:
1、当前dp[i][j]中的容量j不足以放下weight[i],此时最大价值为dp[i-1][j]
2、当前dp[i][j]放入一个新的物品i价值最大:dp[i][j-weight[i]]+value[i](与 01背包不同点,放入物品i的之前的最大dp不在物品i-1,而是在物品i,因为是无限的物品)
3、当前dp[i][j]在完全不放入物品i时最大dp[i-1][j]
(4)确定dp数组初始化
1、通过递推公式可以看出,dp[i][j]中可能与dp[i-1][j]有关,所以需要初始化最上边的行
dp[0][j]:也就是放入物品0,在容量为j时的大小
2、dp[i][j-weight[i]会与边界]dp[i][0]有关,所以需要初始化
dp[i][0]:容量为0条件下,无论物品几都无法放下,所以初始化为0
(5)确定dp数组遍历顺序
i从大到小,j从大到小
(1)一维dp滚动数组
(2)确定dp数组下标
dp[j]表示在容量为j的条件下,最大的价值
(3)确定dp递推公式(状态转移方程)
dp[j] = max[dp[j],dp[j-weight[i]]+value[i]]
(4)确定dp数组初始化
(5)确定dp数组遍历顺序
i从小到大,j从小到大(与01背包不同,01背包的j是从大到小,为的是dp[j-weight[i]]选择的是i-1的最大价值,但是这里完全背包需要的是在物品i中的前一个满足物品i重量的最大价值dp[i][j-weight[i]],因为是从小到大,所以需要判断j<weight[i])
2、完全背包求排列组合
dp[j] = dp[j] +dp[j-weight[i]]从小到大遍历(与01背包相反)
组合
遍历顺序:for物品i,for(j=weight[i];j<=target;j++)-->求的是组合
排列
for(容量j=0;j<target;j++)for(i=0;i<nums.size();i++){if(j>nums[i]){递推公式}}-->排列
完全背包
题目链接:52. 携带研究材料(第七期模拟笔试)
整体思路:
需要注意:01背包的j是逆向计算,完全背包的j是正向计算,但是要从j=weight[i],到==target,不能丢了target整体代码:
#include <bits/stdc++.h> #include <iostream> #include <cstdio> #include <vector> using namespace std; int main() { int nums=0,target=0; cin >>nums>>target; vector<int>weight(nums,0); vector<int>value(nums,0); for(int i=0;i<nums;i++) { cin >>weight[i]>>value[i]; } vector<int>dp(target+1,0);//最大的容量 //初始化dp[0]=0; //开始遍历 for(int i=0;i<nums;i++) { for(int j=weight[i];j<=target;j++) { dp[j] = max(dp[j],dp[j-weight[i]]+value[i]); } } printf("%d",dp[target]); return 0; }
零钱兑换Ⅱ
题目链接:518. 零钱兑换 II - 力扣(LeetCode)
整体思路:
需要在判断dp[j] +=dp[j-weight[i]]时可能会超过32位数据
整体代码:
class Solution { public: int change(int amount, vector<int>& coins) { //组合 完全背包,物品、容量 vector<int>dp(amount+1,0); dp[0]=1;//价值为0,只用物品0,不放是一种方法 for(int i=0;i<coins.size();i++)//物品-->组合 { for(int j=coins[i];j<=amount;j++) { //需要额外判断是不是超过了32位 if(dp[j]<INT_MAX-dp[j-coins[i]]) dp[j] = dp[j] + dp[j-coins[i]]; } } return dp[amount]; } };
组合总和Ⅳ
题目链接:377. 组合总和 Ⅳ - 力扣(LeetCode)
整体思路:
题目要求寻找的是排列,同时满足32位,所以需要INT_MAX-dp[i]>=dp[i-nums[j]]
整体代码:
class Solution { public: int combinationSum4(vector<int>& nums, int target) { //每个元素可以选择无数次,选择进行组合,没说写出组合的内容-->使用完全背包(1维简单,j正向遍历,排列先容量) //定义dp数组 vector<int>dp(target+1,0);//确保target容量存在 //初始化:target最小为1,dp[0]表示容量为0条件下最多的组合个数,就不放所以是1种 dp[0] = 1; // for(int i= 0;i<=target;i++) { for(int j=0;j<nums.size();j++) { if(i>=nums[j]&&INT_MAX-dp[i]>=dp[i-nums[j]]) dp[i] = dp[i]+dp[i-nums[j]];//没有i的方法+有i的上一个最大的方法 } } return dp[target]; } };
爬楼梯(进阶)
题目链接:57. 爬楼梯(第八期模拟笔试)
代码随想录整体思路:
整体代码: