算法第32天|动态规划:完全背包、零钱兑换Ⅱ、组合总和Ⅳ、爬楼梯(进阶)

今日总结:

        1、完全背包问题(求价值和最大)

        (1)二维dp定义(当一道题可以抽象成这种形式就是完全背包)

                        有N件物品和一个最大容量为W的背包。第i件物品的重量是weight[i],其价值是value[i],每件物品都有无限个(与01背包的不同,01背包只有一个,只有放与不放),求解哪些物品装入背包物品价值总和最大

                (2)确定dp数组下标:

                        dp[i][j]:表示在容量为j情况下,在物品[0,i]中选择若干物品,价值总和最大

                (3)确定递推公式(状态转移方程)

                        分成三种情况:

                        1、当前dp[i][j]中的容量j不足以放下weight[i],此时最大价值为dp[i-1][j]

                        2、当前dp[i][j]放入一个新的物品i价值最大:dp[i][j-weight[i]]+value[i](与 01背包不同点,放入物品i的之前的最大dp不在物品i-1,而是在物品i,因为是无限的物品)

                        3、当前dp[i][j]在完全不放入物品i时最大dp[i-1][j]

                (4)确定dp数组初始化

                        1、通过递推公式可以看出,dp[i][j]中可能与dp[i-1][j]有关,所以需要初始化最上边的行 

                                dp[0][j]:也就是放入物品0,在容量为j时的大小

                        2、dp[i][j-weight[i]会与边界]dp[i][0]有关,所以需要初始化

                                dp[i][0]:容量为0条件下,无论物品几都无法放下,所以初始化为0

                (5)确定dp数组遍历顺序

                        i从大到小,j从大到小

                (1)一维dp滚动数组
                (2)确定dp数组下标

                        dp[j]表示在容量为j的条件下,最大的价值

                (3)确定dp递推公式(状态转移方程)

                        dp[j] = max[dp[j],dp[j-weight[i]]+value[i]]

                (4)确定dp数组初始化
                (5)确定dp数组遍历顺序

                        i从小到大,j从小到大(与01背包不同,01背包的j是从大到小,为的是dp[j-weight[i]]选择的是i-1的最大价值,但是这里完全背包需要的是在物品i中的前一个满足物品i重量的最大价值dp[i][j-weight[i]],因为是从小到大,所以需要判断j<weight[i])

        2、完全背包求排列组合

                dp[j] = dp[j] +dp[j-weight[i]]从小到大遍历(与01背包相反)

                组合

                                遍历顺序:for物品i,for(j=weight[i];j<=target;j++)-->求的是组合

                排列

                                for(容量j=0;j<target;j++)for(i=0;i<nums.size();i++){if(j>nums[i]){递推公式}}-->排列 

完全背包

题目链接:52. 携带研究材料(第七期模拟笔试)

代码随想录

整体思路:
        需要注意:01背包的j是逆向计算,完全背包的j是正向计算,但是要从j=weight[i],到==target,不能丢了target

整体代码:

#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;

int main()
{
    int nums=0,target=0;
    cin >>nums>>target;
    vector<int>weight(nums,0);
    vector<int>value(nums,0);
    for(int i=0;i<nums;i++)
    {
        cin >>weight[i]>>value[i];
    }
    vector<int>dp(target+1,0);//最大的容量
    //初始化dp[0]=0;
    //开始遍历

    for(int i=0;i<nums;i++)
    {
        for(int j=weight[i];j<=target;j++)
        {
            dp[j] = max(dp[j],dp[j-weight[i]]+value[i]);
        }
    }
    printf("%d",dp[target]);
    return 0;
}

零钱兑换Ⅱ

题目链接:518. 零钱兑换 II - 力扣(LeetCode)

代码随想录

整体思路:

        需要在判断dp[j] +=dp[j-weight[i]]时可能会超过32位数据

整体代码:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        //组合 完全背包,物品、容量
        vector<int>dp(amount+1,0);
        dp[0]=1;//价值为0,只用物品0,不放是一种方法
        for(int i=0;i<coins.size();i++)//物品-->组合
        {
            for(int j=coins[i];j<=amount;j++)
            {
                //需要额外判断是不是超过了32位
                if(dp[j]<INT_MAX-dp[j-coins[i]])
                    dp[j] = dp[j] + dp[j-coins[i]];
            }
        }
        return dp[amount];
    }
};

组合总和Ⅳ

题目链接:377. 组合总和 Ⅳ - 力扣(LeetCode)

代码随想录

整体思路:

        题目要求寻找的是排列,同时满足32位,所以需要INT_MAX-dp[i]>=dp[i-nums[j]]

整体代码:

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        //每个元素可以选择无数次,选择进行组合,没说写出组合的内容-->使用完全背包(1维简单,j正向遍历,排列先容量)
        //定义dp数组
        vector<int>dp(target+1,0);//确保target容量存在
        //初始化:target最小为1,dp[0]表示容量为0条件下最多的组合个数,就不放所以是1种
        dp[0] = 1;
        //
        for(int i= 0;i<=target;i++)
        {
            for(int j=0;j<nums.size();j++)
            {
                if(i>=nums[j]&&INT_MAX-dp[i]>=dp[i-nums[j]])
                    dp[i] = dp[i]+dp[i-nums[j]];//没有i的方法+有i的上一个最大的方法
            }
        }
        return dp[target];

        
    }
};

爬楼梯(进阶)

题目链接:57. 爬楼梯(第八期模拟笔试)
代码随想录

整体思路:

整体代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值