YoloV8改进策略:主干网络篇|MobileNetV4主干替换YoloV8的BackBone(独家原创)

本文介绍了如何将MobileNetV4作为YOLOV8的BackBone,通过适当地修改层数和卷积层,提升了模型的性能。MobileNetV4在保持高效的同时,通过引入通用反向瓶颈(UIB)和Mobile MQA注意力机制,实现了硬件无关的帕累托效率。文章详细讨论了NAS优化、模型设计、性能结果和蒸馏方案,展示了一种在多种硬件平台上实现最优性能的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

今年,轻量级王者MobileNetV4闪亮登场!在我们这篇文章里,我们把MobileNetV4加入到了YoloV8中,对MobileNetV4的层数和卷积层核做了适当的修改,然后替换原有的BackBone。哈哈,你猜怎么着?效果超赞!
在这里插入图片描述

文章里详细记录了改进过程,给那些正在为创新点子发愁的小伙伴们提供了满满的灵感。嘿,想要发表关于轻量级改进的论文?这篇文章绝对是你的首选参考!

论文翻译:《MobileNetV4——移动生态系统的通用模型》

论文链接:https://arxiv.org/pdf/2404.10518
我们推出了最新一代的MobileNets,称为MobileNetV4(MNv4),其特点是为移动设备提供普遍高效的架构设计。在核心部分,我们引入了通用倒置瓶颈(UIB)搜索块,这是一种统一且灵活的结构,融合了倒置瓶颈(IB)、ConvNext、前馈网络(FFN)以及新型Extra Depthwise(ExtraDW)变体。除了UIB之外,我们还推出了Mobile MQA,这是一种专为移动加速器设计的注意力块,可带来高达39%的速度提升。我们还引入了一种优化的神经架构搜索(NAS)配方,提高了MNv4搜索的有效性。UIB、Mobile MQA和精炼的NAS配方的集成,产生了一系列新的MNv4模型,这些模型在移动CPU、DSP、GPU以及像Apple Neural Engine和Goog

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值