c++判断删除某结点后图连通性 使用并查集

本文介绍如何使用C++和并查集解决一个问题:在给定的无向连通图中,检查是否存在一个节点,删除它会导致图的其余部分不连通。通过代码示例展示了具体的实现过程,邀请读者进行交流讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

在文本文件input4.txt中给定无向连通图G,判断图G是否存在这样一个顶点V,当V被删除时,该图的其他部分不再连通。如果存在,只需要找出一个这样的顶点,并输出顶点的编号, 如果不存在,则输出"not exist"。

输入:
5   // 表示顶点个数
1 5 // 节点1和5之间有一条边
2 3
2 4
3 5
4 5
输入数据对应的图如下所示:
       4
      / \
1 -- 5   2
      \ /
       3
输出:
5

废话不多说,直接上代码

#include <fstream>
#include <vector>
#include<iostream>
using namespace std;

int main()
{
   
   
    ifstream infile("./FUSHI/2017/input4.txt");
    int n;
    infile >> n;
    vector<vector<bool>> G(n + 1, vector<bool>(n + 1, false));
    int a, b;
    while (infile >> a >> b)
    {
   
   
        G[a][b] 
并查集(Disjoint-set data structure),又称为“路径压缩找集”或 “链接-切割树”,是一种数据结构,常用于解决一系列元素之间的连接问题。它支持两个基本操作: 1. **合集合(Union)**:将两个集合合成一个。 2. **询代表元(Find)**:确定某个元素属于哪个集合,返回该集合的代表元。 在 C++ 中处理图的连通块数量问题时,我们通常采用并查集来统计图中连通分量的数量。这适用于有向图或无向图的情况,特别是当需要频繁更新或者询节点间的连通性时更为高效。 ### 并查集实现步骤 #### 初始化 初始化并查集时,每个元素被视为独立的一个集合,其代表元为自己。 ```cpp std::vector<int> parent(n); // n为元素总数 for (int i = 0; i < n; ++i) { parent[i] = i; } ``` #### 找集合代表元 通过递归地向上寻找直到找到根节点为止,同时可以利用路径压缩优化,即在每次找时直接把沿途的每个结点都指向根节点,以减少下次找时间复杂度。 ```cpp int find(int x) { if (parent[x] != x) { parent[x] = find(parent[x]); // 路径压缩 } return parent[x]; } ``` #### 合两个集合 将两个集合合为一个集合的操作,只需修改它们的代表元即可。 ```cpp void union_set(int a, int b) { int rootA = find(a); int rootB = find(b); if (rootA != rootB) { parent[rootA] = rootB; } } ``` ### 使用示例 假设有一个无向图,可以通过列表表示: ```cpp std::vector<std::pair<int, int>> edges = {{1, 2}, {2, 3}, {4, 5}}; int main() { int n = 6; // 图中有6个顶点 std::vector<bool> visited(n, false); // 记录已访问过的顶点 int connectedComponents = 0; for (auto &edge : edges) { int u = edge.first - 1; int v = edge.second - 1; if (find(u) != find(v)) { // 如果两顶点不在同一个集合中,则它们之间有一条新形成新的连通分量 union_set(u, v); ++connectedComponents; } } printf("Number of connected components: %d\n", connectedComponents); return 0; } ``` 上述代码首先初始化了一个并查集遍历了所有的。每遇到一条,如果两个端点分别属于不同的集合,则说明找到了一个新的连通分量,因此计数加一。最后输出连通分量的数量。 ### 相关问题: 1. 并查集的路径压缩如何工作? 2. 并查集是否适用于动态更新的情况? 3. 并查集如何用于检测图是否存在环?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

keepshen123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值