奥卡姆剃刀原理

本文探讨了14世纪逻辑学家威廉·奥康姆提出的奥卡姆剃刀原理在机器学习中的应用,强调了简单模型的泛化优势。通过最小描述长度原则,我们倾向于选择能有效压缩数据集并避免过拟合的模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        奥卡姆剃刀Occam’s Razor原理是由14世纪逻辑学家William of Occam 提出的一个解决问题的法则:“如无必要勿增实体”.奥卡姆剃刀的思想和机器学习中的正则化思想十分类似:简单的模型泛化能力更好如果有两个性能相近的模型,我们应该选择更简单的模型因此在机器学习的学习准则上我们经常会引入参数正则化来限制模型能力,避免过拟合

        奥卡姆剃刀的一种形式化是最小描述长度(Minimum Description Length,MDL)原则即对一个数据集𝒟,最好的模型𝑓 ∈ ℱ 会使得数据集的压缩效果最好,即编码长度最小

透过现象看机器学习:奥卡姆剃刀,没有免费的午餐,丑小鸭定理等_泛化_04

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值