奥卡姆剃刀(Occam’s Razor)原理是由14世纪逻辑学家William of Occam 提出的一个解决问题的法则:“如无必要,勿增实体”.奥卡姆剃刀的思想和机器学习中的正则化思想十分类似:简单的模型泛化能力更好.如果有两个性能相近的模型,我们应该选择更简单的模型.因此,在机器学习的学习准则上,我们经常会引入参数正则化来限制模型能力,避免过拟合.
奥卡姆剃刀的一种形式化是最小描述长度(Minimum Description Length,MDL)原则,即对一个数据集𝒟,最好的模型𝑓 ∈ ℱ 会使得数据集的压缩效果最好,即编码长度最小.