一、什么是后训练?
在后大模型时代,后训练(Post-Training) 并非独立的训练环节,而是连接“通用预训练底座”与“特定任务落地”的关键桥梁——它以预训练模型(已具备通用语言理解、知识存储能力)为基础,针对某一垂直领域(如医疗、金融)或具体任务(如代码生成、数学推理)进行定向优化训练。这一阶段的核心目标,是让“通才模型”转型为“专才模型”,而实现这一目标的核心手段通常包含两大方向:微调(Fine-tuning) 与对齐(Alignment)。
- 微调:通过特定任务数据调整模型参数,让模型适配任务格式与领域知识(如让通用模型学会识别电子病历中的疾病术语);
- 对齐:通过技术手段校准模型输出,使其符合人类偏好与伦理规范(如避免客服模型生成生硬或违规的回复)。
下图清晰展示了模型训练的完整链路,其中后训练阶段是承上启下的核心:
- 黑色:预训练阶段(构建通用知识底座,如学习海量文本中的语法、常识);
- 红色:后训练阶段(定向优化,让模型具备任务/领域专属能力);
- 紫色:推理测试阶段(验证模型在实际场景中的表现)。
二、为什么必须进行后训练?——从扩展律视角看必要性
后训练的价值,本质上源于预训练扩展律的边际递减与任务落地的个性化需求。要理解这一点,需先明确预训练与后训练的扩展逻辑差异。
1. 预训练扩展律的局限
预训练阶段,模型性能(如理解准确率、生成流畅度)与三大要素呈幂次关系:计算量(C)、参数量(N)、数据量(D),三者满足公式 。但这种“规模换性能”的逻辑存在明显瓶颈:
- 边际收益递减:当模型参数量从10B增至100B时,数学推理准确率可能从40%升至65%;但从100B增至1T时,准确率可能仅从65%升至70%,投入产出比大幅下降;
- 自回归模型的固有缺陷:以GPT系列为代表的自回归模型(生成时逐词预测下一个token),无法对已生成内容进行“自主修正”——若第一步推理出错(如计算“2+3=6”),后续步骤会基于错误继续生成,最终结果必然偏离正确答案。仅靠扩大参数量,无法解决这一逻辑漏洞。
举个例子:当让GPT-3(175B)解决“小明有5个苹果,分给3个同学后剩2个,每个同学分几个”时,模型可能先错误计算“5-2=2”,进而得出“每个同学分2个”的结论,且无法回头修正“5-2=2”的错误。
2. 后训练扩展律:打开性能新维度
为突破预训练的局限,后训练扩展律(Post-Training Scaling Laws) 应运而生——模型性能提升不再仅依赖“预训练规模”,而是可通过两个新维度实现:
- 强化学习(RL)探索时间:延长后训练中RL的交互探索时长,让模型在“试错”中学习更通用的逻辑(如数学推理中的“验算”习惯);
- 推理思考时间(Test-time Scaling Reasoning):在推理阶段给予模型更多“思考步骤”,而非一次性生成答案(如分步骤推导数学题)。
如下图所示,随着后训练计算量(RL探索)与推理计算量(思考步骤)的增加,模型性能会持续上升,且无明显边际递减:
行业案例:OpenAI在GPT-4后训练中,通过将RL探索时间从100小时延长至500小时,并在推理时强制模型输出“分步思考过程”,使数学题正确率从70%提升至85%,证明了后训练扩展律的实际价值。
三、大模型后训练的典型流程——以Llama 3为例
后训练并非单一步骤,而是“数据生成-模型训练-对齐优化”的迭代飞轮。以Meta的Llama 3为例,其工业界后训练流程可拆解为5个核心步骤,形成持续优化的闭环:
-
奖励模型(Reward Model, RM)训练
通过人工标注或机器生成“偏好配对样本”(如同一prompt下的“优质回复”与“劣质回复”),训练RM具备“判断回复好坏”的能力。标注团队需经过领域培训,例如技术类任务标注员需掌握Python语法,确保能准确判断代码回复的正确性。 -
多轮生成采样
选取当前性能最优的模型(或某一能力突出的模型,如数学推理专用模型),对一批人工设计的prompt(如“解释相对论的核心原理”)进行K次生成,每个prompt得到K条<Prompt, Response>数据。K值需根据模型规模调整:7B模型K取10-15次,70B模型K取25-30次,平衡效率与样本多样性。 -
拒绝采样与SFT样本筛选
用训练好的RM对K条<Prompt, Response>打分,选取Top-N条高分样本作为“指令微调(SFT)精选数据”。N值随任务复杂度变化:简单问答(如“天气查询”)N取5-8,复杂推理(如“证明勾股定理”)N取2-3,优先保证样本质量。 -
SFT训练与对齐学习
用精选样本训练SFT模型(让模型学习“优质回复”的格式与逻辑),再通过新收集的偏好样本进行对齐学习(Llama 3采用DPO算法),最终得到性能优于初始模型的新版本。 -
飞轮迭代优化
重复步骤1-4:用新版本模型生成更多样本,更新RM的训练数据,进一步优化SFT与对齐效果。通常每2-3周完成一次迭代,确保模型能力持续提升。
四、后训练的核心数据:SFT数据与Preference数据
数据是后训练的“燃料”,不同类型的数据承担不同角色,其质量直接决定后训练效果。
1. SFT数据:教模型“怎么说”
SFT数据(Supervised Fine-tuning Data)的核心作用是让模型掌握特定任务的输出格式与基础逻辑,通常通过“多轮采样+RM筛选”生成,关键细节如下:
- 采样模型选择:两种场景——①迭代中平均得分最高的“通用模型”(适合广谱任务);②某一能力突出的“专项模型”(如法律问答选法律专项模型);
- Prompt来源:初期用人工标注的基础Prompt(如“解释合同条款”),后期引入“特殊System Prompt”(如“以律师身份,用通俗语言解释合同条款,避免法律术语”),引导模型适配特定角色;
- 数据更新频率:每月更新一次SFT数据,补充新场景样本(如电商SFT数据需加入“618促销”相关内容)。
2. Preference数据:教模型“什么是好”
Preference数据(偏好数据)用于训练RM与对齐模型,核心是“让模型理解人类偏好”,标注规则更精细:
- 采样模型策略:部署多个“差异化模型”(如不同数据配比、不同对齐算法训练的模型),每个Prompt让两个不同模型生成回复——例如让“侧重准确性的模型”与“侧重流畅性的模型”分别生成,确保回复差异度,提升数据多样性;
- 偏好等级定义:明确四档判断标准:
- 显著更好:完全解决问题,逻辑严谨,无任何漏洞(如代码能直接运行且注释清晰);
- 更好:解决核心问题,有轻微表述冗余(如代码正确但注释不足);
- 稍微更好:部分解决问题,需补充少量信息(如代码有语法错误但思路正确);
- 略微更好:思路正确,存在明显逻辑跳跃(如代码缺少关键步骤);
- 标注优化:允许标注员修改“优选回复”(Edited Response),最终优先级为:Edited Response > Chosen Response > Rejected Response,进一步提升数据质量;
- 难度迭代:随着模型性能提升,逐步提高Prompt复杂度(如从“计算1+1”到“计算微积分极限”),避免模型“躺平”。
五、后训练的核心技术(一):微调(Fine-tuning)
微调是后训练的“基础操作”,目标是让预训练模型适配特定任务,主要分为全量微调与参数高效微调(PEFT) 两类,各有适用场景。
1. 全量微调(Full Fine-Tuning, FFT)
全量微调是对预训练模型的所有参数进行重新训练,让模型从“通用知识”完全转向“任务专属知识”。
- 适用场景:小参数量模型(如1B以下)、任务数据量极大(如百万级样本)、对任务适配度要求极高(如军事领域的保密文本分析);
- 优缺点:
- 优点:模型适配度最高,能充分利用任务数据;
- 缺点:计算成本极高——70B模型全量微调单次需占用8张A100显卡(每张40GB显存),训练周期长达1-2周,工业界极少用于大模型。
2. 参数高效微调(PEFT)
PEFT是大模型微调的主流方案,仅调整模型的一小部分参数(通常<1%),在降低成本的同时保持性能。常见方法包括“选择参数子集”“重新参数化”“添加可训练Token”等,其中LoRA(Low-Rank Adaptation) 应用最广泛。
LoRA:用低秩矩阵实现高效适配
LoRA的核心思路是“不直接修改预训练模型的权重矩阵W,而是通过低秩矩阵分解间接调整”,具体原理如下:
- 预训练权重矩阵为
(维度为d×d);
- 将W的更新量分解为两个低秩矩阵A(d×r)和B(r×d)的乘积,即ΔW = A×B,其中r为“秩”(通常取4-64);
- 训练时仅更新A和B的参数,预训练权重W固定不动。
实际应用:金融文本分类任务中,LoRA的r取16时,仅需训练约0.1%的参数(70B模型约700万参数),训练成本仅为全量微调的1/100,而分类准确率仅比全量微调低2%-3%。
PEFT其他常见方法
- Prompt-tuning:在输入层添加可训练的“任务专属Token”(如“[金融分类]”),通过调整这些Token的嵌入向量适配任务,适合文本分类、情感分析等简单任务;
- Adapter-tuning:在模型的Transformer层中插入小型“Adapter模块”(如 bottleneck 结构),仅训练Adapter参数,适合多任务场景(如同时处理文本生成与翻译)。
六、后训练的核心技术(二):对齐(Alignment)
对齐是后训练的“安全保障”,目标是让模型输出符合人类偏好与伦理规范,避免生成有害、偏见或不符合需求的内容。强化学习(RL)是对齐的核心工具,其中最经典的方案是人类反馈强化学习(RLHF)。
1. RLHF的三大核心组成
RLHF通过“人类反馈-奖励信号-策略优化”的链路实现对齐,需满足三个关键条件:
- 人类偏好反馈数据:格式为<input, accept, reject>,即“输入prompt+优质回复+劣质回复”,需定期更新(每3个月一次),避免数据过时;
- 奖励模型(RM):将人类偏好转化为“可计算的奖励信号”,分为Rule-based RM(基于规则,如“含敏感词则扣分”)和Model-based RM(基于大模型判断,如用GPT-4判断回复逻辑);
- 强化学习策略优化算法:基于RM的奖励信号调整模型策略,常见算法有PPO、DPO、GRPO。
2. 三大策略优化算法对比
不同算法的适用场景与性能差异显著,选择需结合任务需求:
算法名称 | 核心逻辑 | 适用场景 | 优势 | 劣势 |
---|---|---|---|---|
PPO(近端策略优化) | 限制策略更新幅度,避免模型发散 | 连续任务(如对话机器人)、需稳定训练 | 训练稳定,鲁棒性强 | 需额外训练价值模型,显存占用高 |
DPO(直接偏好优化) | 直接用偏好数据优化策略,无需单独RM | 静态偏好数据(如文本摘要偏好) | 流程简化,训练速度快 | 依赖高质量偏好数据,抗噪性弱 |
GRPO(组内相关策略优化) | 用同一prompt的多个输出平均奖励替代价值模型 | 大模型高效对齐(如70B模型) | 无需价值模型,显存占用低 | 对RM评分精度要求高,易受异常值影响 |
案例:Llama 3选择DPO算法进行对齐,原因是其偏好数据为静态标注(非实时交互),且DPO无需训练RM,可缩短20%的训练周期;而OpenAI的ChatGPT采用PPO,因对话任务需实时调整策略,PPO的稳定性更重要。
七、奖励模型(RM)的优化方向
RM是对齐的“裁判”,其判断准确性直接决定模型对齐效果。随着模型能力提升,RM的优化需向“更精细、更鲁棒”方向发展:
1. 从“判别式”到“生成式”:提升推理判断能力
- LLM as a judge:用大模型(如GPT-4)作为“裁判”,判断模型输出是否符合事实(如“回答是否符合医学常识”),适合事实性任务,但对模糊场景(如创意写作)判断不足;
- Generative RM:让RM先生成“推理过程”(如“为什么这个回复好”),再给出奖励——例如判断数学题回复时,RM先推导正确解法,再对比模型步骤打分,避免“只看结果不看过程”的误判;
- Critic Model:针对模型的“隐蔽错误”(如法律条文的细微曲解),训练专门的“批评家模型”(如CriticGPT),辅助RM识别漏洞。例如在合同审查任务中,Critic Model可检查模型是否遗漏“违约责任”条款。
2. 从“结果导向”到“过程导向”:优化推理奖励
- ORM(Outcome-based Reward Model):仅对最终结果打分(如“答案是否正确”),反馈稀疏,无法引导模型优化推理步骤;
- PRM(Process-based Reward Model):分步骤对推理过程打分(如数学题每一步推导是否正确),反馈更精细,能引导模型养成“分步验算”的习惯。例如解“2x+3=7”时,PRM会对“第一步:2x=7-3=4”和“第二步:x=2”分别打分,避免模型因一步错满盘错。
3. 对抗奖励 hacking:增强鲁棒性
模型可能通过“投机取巧”欺骗RM(如生成讨好RM的套话而非真实内容),需通过以下方式防范:
- 混合RM训练:将Rule-based RM、Generative RM、Critic Model的打分融合,避免单一RM被破解;
- 对抗性测试:在训练数据中混入“诱导性prompt”(如“生成看似正确但实际错误的医学建议”),让RM学习识别这类陷阱;
- 定期更新RM:每2个月用新场景数据(如最新政策、新领域知识)微调RM,避免模型掌握RM的固定判断逻辑。
八、推理阶段的优化:让模型“慢思考”
后训练不仅优化模型参数,还需优化推理阶段的“思考方式”——从“快思考”(一次性生成)转向“慢思考”(分步推理),提升复杂任务性能。
1. 两种思考模式的差异
思考模式 | 核心逻辑 | 优点 | 缺点 | 适用场景 |
---|---|---|---|---|
系统1(快思考) | 一次性生成完整结果 | 速度快,耗时短 | 易出错,错误会传播 | 简单任务(如天气查询) |
系统2(慢思考) | 分步生成推理过程 | 准确率高,错误可修正 | 速度慢,耗时久 | 复杂任务(如数学推理) |
2. 慢思考的实现方法
- CoT(Chain of Thought):通过Prompt引导模型分步推理(如“Let’s think step by step”),无需额外训练,适合快速提升推理能力。例如让模型解“鸡兔同笼”时,先输出“第一步:设鸡x只,兔y只;第二步:列方程x+y=10,2x+4y=28;第三步:解方程…”;
- MCTS(蒙特卡洛树搜索):将推理过程拆分为“Token级”或“句子级”节点,用PRM为每个节点打分,探索最优推理路径。例如在代码生成中,MCTS会探索“先定义函数”或“先导入库”两种路径,选择PRM打分更高的方案;
- STaR(Self-Taught Reasoner):让模型“自我学习推理过程”——先让模型生成答案与推理,筛选正确样本微调,迭代提升。例如在小学奥数训练中,STaR通过3轮迭代,可将模型正确率从52%提升至78%;
- Quiet-STaR:在训练时加入“思考阶段”——模型生成前先输出“内部思考”(如用特定标签包裹:第一步该算什么…),再生成最终结果,推理时用同样Prompt引导“慢思考”。
九、SFT与RL的对比:记忆与泛化的平衡
SFT与RL是后训练的两大核心手段,二者定位不同,需根据任务需求选择或结合:
维度 | SFT(监督微调) | RL(强化学习) |
---|---|---|
核心逻辑 | 示范“正确答案”,让模型模仿 | 让模型在试错中学习“奖励规则”,自主优化 |
能力侧重 | 记忆训练数据,适配特定格式 | 泛化到未训练场景,学习通用逻辑 |
数据依赖 | 需大量标注的“正确样本” | 需人类偏好反馈(无需完整正确样本) |
优缺点 | 优点:稳定、易收敛;缺点:泛化弱、易过拟合 | 优点:泛化强、突破人类示范上限;缺点:训练复杂、易发散 |
适用场景 | 小样本任务、格式固定任务(如模板化客服) | 大样本任务、泛化需求强(如数学推理) |
关键结论:SFT是RL的基础
尽管RL泛化能力更强,但无SFT的RL训练易失控——例如直接用RL训练未经过SFT的模型,可能生成格式混乱的回复(如混合中英文、缺少标点)。因此工业界常采用“SFT+RL”混合方案:
- 第一步:用SFT稳定模型输出格式(如代码缩进、对话话术);
- 第二步:用RL优化模型的泛化能力与逻辑正确性。
反例:DeepSeek R1-ZERO尝试“仅用RL无SFT”,虽在数学推理任务上达到89%正确率(接近SFT+RL的91%),但输出格式不稳定(如部分回复缺少等号),需后续补充轻量化SFT修正。
十、案例实践:DeepSeek R1的后训练思路
DeepSeek R1是“轻量后训练”的典型案例,其设计思路为资源有限团队提供参考:
- 简化RM设计:未使用复杂的PRM或Generative RM,仅用Rule-based RM(如“数学题步骤正确得1分,结果正确得2分”),降低开发难度;
- 自研GPPO算法:简化PPO的剪辑机制,训练速度提升30%,显存占用降低25%,适合中小团队的硬件条件;
- 探索“纯RL”可行性:R1-ZERO仅用RL训练,证明在特定任务(如数学推理)中,高质量RL可弥补SFT的缺失,为资源有限场景提供低成本方案;
- 推理优化谨慎选择:未采用MCTS等复杂手段,因实验证明其在当前数据量下效果不显著,避免“过度优化”浪费资源。
十一、总结:后训练方案的选择指南
后训练无“通用最优方案”,需结合任务需求、资源成本、性能目标三者平衡:
- 小模型(≤1B)+ 高准确率需求:选择全量SFT;
- 大模型(≥7B)+ 泛化需求:选择“SFT+RL”(如Llama 3、ChatGPT);
- 资源有限(≤2张A100)+ 特定推理任务:选择“纯RL+Rule-based RM”(如DeepSeek R1-ZERO);
- 实时推理性能需求:选择“Test-time Scaling”(如OpenAI O1,延长推理思考时间)。
未来,后训练的发展方向将聚焦于“更低成本、更高鲁棒性、更自动化”——例如通过自动化工具生成偏好数据、用更小的PEFT参数实现更好的适配、让模型自主优化推理步骤,进一步降低大模型落地门槛。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
大模型入门到实战全套学习大礼包
1、大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
2、大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
3、AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
4、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
5、大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
适用人群
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。