词向量Word2vec的本质

本文探讨了词向量Word2vec在自然语言处理(NLP)中的作用,包括词嵌入的概念,Word2vec模型的两种主要类型——Skip-gram和CBOW,并解释了其在知识图谱问答系统中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

词向量Word2vec的本质

1、NLP中的词语
在NLP中最细粒度的是词语,词语组成句子,句子再组成段落、文章。
2、词嵌入(词向量)
在数学中,我们学过映射的概念,即f(x)—>y,在一些数学模型如SVM分类器、神经网络只接收数值型输入,我们就需要把词语转换成数值形式,或者说嵌入到一个数学空间里,这种嵌入方式就叫词嵌入。
3、Word2vec模型
Word2vec就是词嵌入的一种方式。
4、语言模型
在NLP中,把f(x)—>y中的x看作是一个句子里的词语,y是这个词语的上下文词语,那么这里的f就是语言模型,也就是判断x和y放在一起是否符合人类语言。利用Word2vec寻找相似词,例如:对于一句话:她们夸周杰伦唱歌很好听。如果输入x是周杰伦,那么y可以是她们、夸、唱歌、很好听这些词;现有另一句话:她们夸我唱歌很好听。如果输入是x是我,那么这里的上下文y和上面一样。所以f(周杰伦)=f(我)= y,即我=周杰伦。
语言模型又分为Skip-gram模型(根据一个词语来预测上下文)和CBOW模型(根据上下文来预测词语)
Skip-gram的简单情形:Skip-gram的网络结构如图所示,x是one-hot encoder(用一个只含一个1、其他都是0的向量来唯一表示词语)形式的输入,y是在这v个词上输出的概率。
Skip-gram的网络结构
CBOW的简单情形:网络结构如图所示,这里是输入变成了多个单词,所以要对输入处理一下(一般是求均值),输出的cost function不变。
在这里插入图片描述

5、Word2vec的使用
在基于知识图谱的问答系统中,常用于命名实体识别模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值