拓扑排序,基础知识及代码实习

本文详细介绍了拓扑排序的概念及其在有向无环图(AOV网)中的应用。通过邻接表数据结构,实现了拓扑排序算法,用于判断图是否存在环。算法通过将入度为0的顶点入栈,然后出栈并更新其他顶点的入度,直至栈空。如果所有顶点都被输出,则图无环;否则存在环。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拓扑排序是对一个有向图构造拓扑序列,解决工程是否能顺利进行的问题。构造时有 2 种结果:

此图全部顶点被输出:说明说明图中无「环」存在, 是 AOV 网
没有输出全部顶点:说明图中有「环」存在,不是 AOV 网
AOV(Activity On Vertex Network) :一种 有向 无回路 的图
代码实现如下:
首先建立图的邻接表类型(当然邻接矩阵也行):

const int MAXV = 1000;
typedef struct ANode {
	int adjvex;//该边结点的编号
	struct ANode* nextarc;//指向下一个边结点
	int weight;//该边结点的其他信息,如权重等
}ArcNode;//边结点类型
typedef struct Vnode {
	int count;//该边结点的入度值,即前面有几个顶点进入该结点
	ArcNode* firstarc;//指向第一个边结点
}VNode;//邻接表的头结点类型
typedef struct {
	VNode adjlist[MAXV];//邻接表的头结点数组
	int n, e;//顶点数n和边数e
}AdjGraph;//邻接表类型

以下就是拓扑排序算法:
基本思路是把没有前驱顶点的点入栈,然后一个一个出栈,出栈的同时改变其他入度不为0的点,并把新的入度为0的顶点入栈,直到栈空为止!

void Topsort(AdjGraph*G)//拓扑排序算法
{
	int i, j;
	int St[MAXV], top = -1;//St为存放入度为0的栈,初始化时top为-1
	ArcNode* p;
	for (i = 0;i < G->n;i++)
		G->adjlist[i].count = 0;//把所有头结点的入度值初始化为0
	for (i = 0;i < G->n;i++)//求所有顶点的入度
	{
		p = G->adjlist[i].firstarc;
		while (p != NULL)
		{
			G->adjlist[p->adjvex].count++;
			p = p->nextarc;
		}
	}
	for(i=0;i<G->n;i++)//把入度为0的结点进栈
		if (G->adjlist[i].count == 0)
		{
			top++;
			St[top] = i;
		}
	while (top > -1)//栈不空进行循环
	{
		i = St[top];top--;//出栈第一个顶点
		cout << i << " ";
		p = G->adjlist[i].firstarc;//找到第一个邻接点
		while (p != NULL)//将顶点i的出边邻接点入度减一
		{
			j = p->adjvex;
			G->adjlist[i].count--;//那么第一个使用的点变成-1,再也不需要用它了
			if (G->adjlist[j].count == 0)//把改变入度后入度为0的点入栈
			{
				top++;
				St[top] = j;
			}
			p = p->nextarc;//找下一个邻接点直到该条邻接表结束为止
		}
	}
}
### 芯片的概念与计算方法 芯片(Junction Temperature, Tj)是指芯片内部发热区域的度,通常是芯片内最热的部分[^3]。由于芯片在工作时会产生热量,因此通常高于芯片表面度(Case Temperature, Tc)和环境度(Ambient Temperature, Ta)。为了确保芯片的可靠性和使用寿命,设计人员需要掌握计算方法。 #### 计算公式 可以通过以下公式进行计算: - **公式 1**: \[ T_j = T_a + P \cdot R_{ja} \] 其中: - \(T_j\):(单位:°C) - \(T_a\):环境度(单位:°C) - \(P\):芯片功耗(单位:W) - \(R_{ja}\):从到环境的热阻(单位:°C/W) - **公式 2**: \[ T_j = T_c + P \cdot R_{jc} \] 其中: - \(T_c\):芯片表面度(单位:°C) - \(R_{jc}\):从芯片表面的热阻(单位:°C/W) 上述公式适用于不同的测量条件。如果可以直接测量芯片表面度,则使用公式 2 更为准确;如果只能获取环境度,则使用公式 1 进行估算[^5]。 #### 度估算方法 在实际应用中,可以通过以下方法对芯片进行估算: 1. **热成像仪法**: 使用热成像仪测量芯片表面度 \(T_c\),并根据芯片手册中的热阻参数 \(R_{jc}\) 计算 \(T_j\)。由于到壳的热阻较大,和壳之间的差异通常较小,一般可将壳加上 10°C 左右作为的近似值[^4]。 2. **功率损耗法**: 根据芯片的实际功耗 \(P\) 和热阻参数 \(R_{ja}\) 或 \(R_{jc}\),通过公式计算。需要注意的是,实际功耗应包括驱动功率、开关损耗和导通损耗等,且通常远小于芯片手册中给出的最大耗散功率。 3. **热仿真工具**: 使用热仿真工具(如 Flotherm)可以更精确地预测芯片分布,特别是在复杂散热环境中。这种方法能够考虑更多实际因素,如气流、材料特性等[^1]。 #### 示例代码 以下是一个简单的 Python 示例,用于根据公式计算芯片: ```python def calculate_junction_temperature(Ta, P, Rja): """ 计算芯片 :param Ta: 环境度 (°C) :param P: 芯片功耗 (W) :param Rja: 到环境的热阻 (°C/W) :return: (°C) """ Tj = Ta + P * Rja return Tj # 示例参数 Ta = 25 # 环境度 (°C) P = 2.5 # 功耗 (W) Rja = 50 # 到环境的热阻 (°C/W) # 计算 Tj = calculate_junction_temperature(Ta, P, Rja) print(f"芯片为: {Tj} °C") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值