- 博客(314)
- 收藏
- 关注
原创 P10720 [GESP202406 五级] 小杨的幸运数字
本文介绍了如何通过预处理方法高效判断一个数是否为"幸运数字"(恰好有两种不同质因子)。首先使用埃氏筛法标记质数,然后遍历每个质数的倍数,统计每个数的不同质因子数量。预处理完成后,查询时只需检查计数是否为2即可。该方法预处理复杂度为O(mxloglogmx),查询复杂度为O(1),适用于a_i≤1e6、n≤1e4的数据范围。文中包含代码实现、复杂度分析和样例验证,并强调了注意"不同质因子"的含义和处理细节。
2025-09-09 18:15:52
623
原创 P10719 [GESP202406 五级] 黑白格
【摘要】本文介绍了一种解决黑白格子问题的二维滑窗算法。给定n×m的01网格,要求找到包含至少k个黑格子的最小面积子矩形。核心思路是将二维问题转化为一维子段和问题:枚举上下边界确定高度H,维护每列的黑格数数组col,用滑动窗口在col中寻找和≥k的最短连续列段。算法时间复杂度O(n²·m),空间复杂度O(n·m),适用于n,m≤100的情况。文章详细解析了算法步骤、易错点,并提供了优化技巧和完整代码实现,最后通过测试案例验证了算法的正确性。
2025-09-09 17:50:13
819
原创 B4361 [GESP202506 四级] 排序
本文解析了GESP四级考试中的排序与最少相邻交换次数问题。题目要求将队伍按身高降序、体重降序排列,每次只能交换相邻同学,求最少交换次数。解题关键在于理解相邻交换的最少次数等于冒泡排序中的交换次数,即序列中的逆序对总数。文章详细分析了排序规则转化为代码逻辑的过程,包括定义比较条件和冒泡排序实现。代码解析部分说明了使用二维vector存储数据的原因,以及冒泡排序函数中的关键细节。时间复杂度分析表明该解法在题目限制下完全可行。最后总结了易错点及核心收获,强调掌握多关键字排序条件和相邻交换计数的实际应用价值。
2025-09-07 12:15:17
761
原创 B4360 [GESP202506 四级] 画布裁剪
本文解析了GESP四级真题中的画布裁剪问题。题目要求将一个h行w列的字符矩阵按给定的1-based行列范围(x1-x2,y1-y2)进行裁剪输出。解题关键在于正确将1-based行列编号转换为0-based数组索引,通过遍历指定范围逐字符输出或使用substr函数截取子串。核心易错点是行列索引转换和循环边界处理,需特别注意x1-1到x2-1的转换。文章提供了完整的C++代码实现,分析了O(h*w)的时间复杂度,并讨论了空间优化可能。题目考察基础编程能力,重点在于精确实现需求转换。
2025-09-07 10:04:26
866
原创 B4264 [GESP202503 四级] 二阶矩阵
本文解析了GESP四级考试中的"好子矩阵"计数问题。题目要求统计给定n×m整数矩阵中所有满足条件的2×2子矩阵数量,条件为子矩阵左上×右下=右上×左下。解题采用暴力枚举法:遍历所有可能的2×2子矩阵,逐个验证条件并计数。由于数据范围较小(n,m≤500),该方法时间复杂度为O(nm),完全可行。文章详细讲解了代码实现,包括矩阵存储、边界处理、条件判断等关键点,并提醒注意循环边界和元素位置等易错问题。最终强调对于小数据量问题,暴力法是最直接可靠的解决方案。
2025-09-07 08:14:49
679
原创 被导师夸爆的文献工具!Connected Papers 帮我告别 “文献迷宫”
科研文献梳理神器ConnectedPapers:一键可视化学术脉络 这款工具通过智能图谱直观展示文献关联,节点大小反映引用量,连线粗细体现关联度,帮助研究者快速定位核心文献与关键演进路径。其筛选功能支持按时间、引用量、开放获取等维度精准检索,而"相关论文"推荐能挖掘隐藏的重要文献。虽然对冷门领域和中文文献覆盖有限,但能显著提升英文文献调研效率,尤其适合撰写综述或开题时理清学术脉络,让科研新手也能快速把握领域全貌。(149字)
2025-09-06 17:36:30
832
原创 洛谷B4263 [GESP202503 四级] 荒地开垦
本文针对网格类问题中的荒地开垦优化问题,提出了一种高效解决方案。问题要求在最多清除一个杂物的条件下,最大化可开垦的荒地数量。解决方案分三步:首先统计初始可开垦荒地数量;然后通过局部影响分析,计算清除每个杂物可能带来的收益;最后选择最优解。该方法通过避免全局遍历,将时间复杂度优化至O(n×m),适用于大规模网格。文章结合具体样例详细解析了算法逻辑,并提供了完整代码实现,有效解决了约束条件下的最优化问题。
2025-09-06 17:30:37
819
原创 机器人复健指南:基于 BFS 的可达性问题解析与代码实现
本文讲解了如何用BFS算法解决机器人在网格场地中的可达性问题。文章详细分析了题目需求,包括8方向移动规则、步数限制和去重要求,提供了基于BFS的完整代码实现,并逐行解析核心逻辑。重点讨论了BFS的层次遍历特性如何适配步数限制,以及1-based坐标处理、访问标记等关键细节,同时指出了代码输出与题目描述可能存在的矛盾点。通过示例演示了算法执行过程,帮助读者理解BFS在有限步数路径搜索问题中的应用。
2025-08-31 22:10:12
1016
原创 正态分布查表定位问题:题目解析与代码实现
本文解析了正态分布查表定位问题,将统计概念转化为代码实现。通过标准化转换公式Z=(X-μ)/σ,将非标准正态分布转换为标准正态分布变量。文章详细解释了表格行列映射规则:行号由整数+十分位决定,列号由百分位确定。提供的C++代码实现了这一逻辑,包括标准化计算、行列号推导和结果输出。代码通过浮点数运算和类型转换确保精度,并包含异常处理机制。最后通过样例验证了算法的正确性,展示了从统计理论到编程实现的完整过程。
2025-08-31 21:50:12
726
原创 openEuler 全方位指南:从安装到实战,附经典习题解析
摘要:本文全面介绍openEuler企业级操作系统,包括其核心特性、版本生命周期及安装配置步骤。内容涵盖基础命令操作、网络服务管理、常见问题排查方法,并提供22道经典习题及解析,帮助读者掌握系统运维核心技能。文章重点解析了openEuler在服务器、云计算等场景的应用优势,以及DNF软件管理、firewalld防火墙等关键技术,适合从入门到进阶的系统学习参考。
2025-08-29 21:44:01
825
原创 基于 PyTorch 的 CNN 实现 MNIST 手写数字识别全解析
摘要:本文详细解析了基于PyTorch框架实现CNN进行MNIST手写数字识别的完整流程。内容包括数据预处理、CNN模型构建(含卷积层、池化层和全连接层)、训练过程优化(使用交叉熵损失和SGD优化器),以及结果可视化分析。通过2500次迭代训练,模型在测试集上达到93%以上的准确率,有效验证了CNN在图像识别任务中的强大性能。该案例为深度学习初学者提供了从理论到实践的完整学习路径,是掌握计算机视觉基础的重要实践。
2025-08-29 21:42:17
681
原创 基于 PyTorch 的 MNIST 手写数字识别:多层前馈神经网络(ANN)实现详解
本文详细介绍了基于PyTorch实现MNIST手写数字识别的多层前馈神经网络(ANN)。内容涵盖数据加载、模型构建、训练评估全流程,重点解析了三层隐藏层的网络结构设计(混合使用ReLU/Tanh/ELU激活函数)、交叉熵损失函数和SGD优化器的使用。文章还提供了现代PyTorch的改进建议,包括GPU加速、Adam优化器、学习率调度等优化方法,并讨论了正则化和数据归一化等提升模型性能的技巧。通过可视化训练曲线和模型保存,帮助读者完整理解从基础实现到工程优化的全过程。该ANN模型在MNIST上预期准确率可达9
2025-08-28 23:10:50
697
原创 基于 PyTorch 的 MNIST 手写数字识别:逻辑回归实现全解析
本文详细介绍了使用PyTorch框架实现逻辑回归模型完成MNIST手写数字识别的全过程。通过解析代码结构,阐述了从数据加载、模型构建到训练评估的完整流程:包括解决SSL证书验证问题、设定超参数、定义线性分类模型、使用交叉熵损失和SGD优化器进行训练,以及结果可视化等关键步骤。该实践不仅验证了线性变换+损失函数+优化器的机器学习基础范式,准确率达到90%以上,更为后续深度学习研究奠定基础。文章完整展示了计算机视觉任务的开发流程,突显了MNIST数据集的教学价值。
2025-08-28 22:30:43
1379
原创 用 PyTorch 实现 CNN 手写数字识别:MNIST 数据集完整实战
本文介绍了使用PyTorch实现CNN进行MNIST手写数字识别的完整流程。主要内容包括:1) 构建一个包含两个卷积层、两个池化层和一个全连接层的CNN模型;2) 数据预处理步骤,包括归一化、训练测试集划分和张量转换;3) 训练过程中采用交叉熵损失和Adam优化器;4) 测试阶段评估模型性能,最终准确率达98%以上。文章详细解析了每个模块的实现细节,包括模型结构设计、数据加载、训练循环和测试评估,并提供了可视化样本展示。此外,还讨论了可能的改进方向,如增加Dropout层、数据增强等。该案例展示了CNN在图
2025-08-27 15:29:39
875
原创 汽车价格与销量预测:用 PyTorch 线性回归模型实现预测分析
本文介绍了使用PyTorch实现汽车价格与销量预测的线性回归模型。通过定义模型结构、准备数据、训练优化和结果可视化,完整展示了机器学习预测流程。代码实现了价格与销量数据的线性关系建模,训练后模型能准确预测不同价格下的销量,为商业决策提供支持。该方案适用于价格敏感性分析、库存管理等领域,具有实际应用价值。
2025-08-27 15:06:26
710
原创 安德烈・卡帕西大模型介绍课:第一部分 —— 预训练阶段
本讲解围绕大语言模型的预训练阶段展开。首先,从互联网获取海量高质量文本数据(如FineWeb的44TB语料,主要源于Common Crawl),并通过URL过滤、语言筛选、去重与隐私信息移除等步骤清洗处理。其次,将原始文本转化为词元序列(约15万亿个token),通过分词器实现符号化表示。随后,利用神经网络学习词元之间的统计关系,不断预测下一个词元,从而在参数中内化语言规律。训练完成后,模型可在推理阶段基于概率分布生成文本。GPT-2和Llama系列模型展示了参数规模与数据规模扩张下的能力跃升,奠定了现代大
2025-08-27 14:31:02
775
原创 用 PyTorch 实现线性回归:预测汽车价格与销量的关系
本文介绍如何使用PyTorch实现线性回归模型,预测汽车价格与销量之间的关系。代码首先准备汽车价格和销量的模拟数据,并将其转换为PyTorch张量。接着定义线性回归模型类,配置均方误差损失函数和随机梯度下降优化器。通过1001次迭代训练模型,记录损失值并可视化其下降趋势。文章详细解析了代码实现过程,包括数据转换、模型定义、训练循环等关键步骤,并解释了线性回归、损失函数、梯度下降等核心概念。结果表明,该模型能有效学习价格与销量间的负相关关系,可为企业定价策略提供数据支持。这个简单的线性回归案例展示了PyTor
2025-08-25 10:35:31
1034
原创 汽车价格与销量数据分析:从数据准备到可视化
在数据分析和机器学习项目中,数据准备与可视化是至关重要的第一步。它们帮助我们理解数据特征、发现潜在规律,并为后续建模提供依据。本文将通过一段分析汽车价格与销量关系的代码,详细解析数据处理的基本流程、关键技术以及可视化的重要性。
2025-08-25 10:27:28
782
原创 深度学习中的反向传播:PyTorch 实现与原理详解
本文通过PyTorch代码示例解析了深度学习中的反向传播原理。演示代码构建了简单的计算图(y=x²→o=1/2*sum(y)),并调用backward()进行梯度计算。详细解释了计算图、链式法则和梯度计算过程,验证了输出结果(x=[2,4]时梯度为[2,4])的正确性。特别强调了requires_grad参数的作用和现代PyTorch的简化写法。指出反向传播通过计算损失函数对各参数的梯度,为神经网络参数更新提供了关键依据,是深度学习模型训练的核心机制。理解这一基础原理有助于掌握复杂模型的训练过程。
2025-08-24 12:16:25
736
原创 PyTorch 中的 Variable:自动求导的基石
本文介绍了PyTorch中的Variable(变量)在自动求导中的核心作用。在PyTorch 0.4.0之前,Variable是包装张量并实现自动求导的关键组件,通过构建计算图记录操作历史,为反向传播提供支持。文章解析了Variable的核心属性(data、grad、grad_fn)和requires_grad参数的意义,并展示了创建Variable的示例代码。尽管现代PyTorch已将Variable功能整合到Tensor中(通过requires_grad=True),但理解Variable的工作原理仍对
2025-08-24 11:53:12
664
原创 数据结构与算法课程设计:基于二叉搜索树的最近邻搜索
本课程设计实现了基于二叉搜索树(BST)的二维空间最近邻搜索系统。系统采用BST存储二维点数据,通过递归实现插入和搜索功能:插入时按坐标排序构建BST;最近邻搜索时计算欧氏距离平方,优先搜索目标方向子树并适时剪枝。测试表明系统能正确找到最近邻点,但存在BST不平衡时效率下降的局限性。本实践加深了对BST特性的理解,为后续学习更高效的空间索引结构(如平衡树)奠定了基础。
2025-08-23 11:43:07
693
原创 PyTorch 张量操作详解:从基础运算到形状变换
《PyTorch张量基础操作解析》摘要:本文详细介绍了PyTorch中核心数据结构张量的基础操作,包括创建3x3全1张量、使用view()方法进行形状变换、元素级加减乘除运算,以及均值标准差等统计计算。通过代码示例展示了张量与Python标量的转换方法item(),并解析了元素级运算和广播机制的特点。这些基础操作广泛应用于神经网络前向传播、损失函数计算和数据预处理等场景,是构建深度学习模型的重要基石。掌握这些操作能有效提升PyTorch代码编写效率,为理解更复杂的深度学习计算流程奠定基础。
2025-08-23 08:28:27
714
原创 NumPy 与 PyTorch 随机数生成对比:rand () 函数解析
NumPy和PyTorch的rand()函数对比分析:两者均生成[0,1)区间的均匀分布随机数,但NumPy默认生成float64数组(适合科学计算),PyTorch生成float32张量(优化深度学习)。NumPy仅支持CPU计算,PyTorch支持GPU加速。随机数在模型初始化、数据增强等场景中至关重要,可通过设置种子保证结果可复现。实际应用中需根据计算需求选择合适工具,NumPy适合通用科学计算,PyTorch专为深度学习优化。
2025-08-23 08:16:13
912
原创 PyTorch 张量入门:从列表到张量的转换与核心特性解析
本文介绍了PyTorch张量的基础概念与创建方法,重点解析了如何将Python列表转换为PyTorch张量。通过示例代码演示了张量的核心属性(类型、形状、维度等),对比了PyTorch张量与NumPy数组的异同,强调张量在深度学习中的关键作用:支持GPU加速和自动求导。作为深度学习的基础数据结构,张量是数据输入、模型参数和中间计算的载体,理解其特性是掌握PyTorch框架的重要前提。文章为初学者提供了清晰的张量入门指南,为后续深度学习学习奠定基础。
2025-08-21 08:43:02
1119
原创 NumPy 与 PyTorch 中的全 1 数组 / 张量:ones () 函数对比解析
本文对比分析了NumPy和PyTorch中创建全1数组/张量的ones()函数。两者虽然语法相似,但存在本质差异:NumPy数组(ndarray)专为科学计算设计,默认使用float64精度,仅支持CPU;PyTorch张量(Tensor)则为深度学习优化,默认float32精度,支持GPU加速和自动求导。通过代码示例演示了如何创建2x3全1结构,并详细解析了形状定义、数据类型设置等核心概念。全1结构在参数初始化、掩码生成等场景有重要应用。理解这些差异有助于根据计算需求(通用计算/深度学习)选择合适的工具,
2025-08-21 08:42:26
1021
原创 NumPy 数组与 PyTorch 张量的相互转换:代码解析与原理详解
本文解析了NumPy数组与PyTorch张量相互转换的方法及原理。通过示例代码演示了使用torch.from_numpy()将NumPy数组转为张量,以及通过.numpy()方法将张量转回数组的过程。关键点在于:1) 转换是零复制操作,共享内存;2) 修改一方会影响另一方数据;3) 这种高效转换连接了数据预处理(NumPy)和模型训练(PyTorch)流程。文中还探讨了实际应用场景,如数据加载、模型输出可视化等,并提醒注意内存共享可能带来的副作用。
2025-08-20 10:13:14
1144
原创 NumPy 数组入门:从代码解析到深度理解
本文介绍了NumPy数组的基本概念和核心特性。通过示例代码展示了如何将Python列表转换为NumPy数组,并解析了数组类型、形状等关键属性。NumPy数组(ndarray)具有同质性、固定大小和多维结构的特点,相比Python列表在内存效率和运算速度上更具优势,特别适合科学计算和大规模数据处理。文章还探讨了NumPy数组在数据分析、机器学习等领域的重要应用,强调掌握NumPy数组是学习数据科学的基础。
2025-08-20 09:53:37
988
原创 用于分析介电谱数据的MATLAB项目
本文介绍了一个用于分析介电谱数据的MATLAB项目结构及其主要功能。项目包括主脚本main.m,用于执行全流程分析;functions/目录下的多个函数,如生成模拟数据、多项式拟合、计算斜率、寻找特征频率点、计算活化能和频谱归算等;以及plots/目录用于存储生成的图像。parameters.m文件定义了实验参数,如温度范围、含水率、频率范围等。主脚本通过调用这些函数,生成模拟数据,进行多项式拟合,提取特征频率点,计算活化能,并将频谱归算至参考温度。最终,项目生成多张图像,包括介电损耗曲线、拟合曲线、特征频
2025-05-30 12:19:29
331
原创 Kano+AHP 模型在惠山泥人分析中的应用(论文+代码使用手册)
本文针对惠山泥人在现代市场中的传承困境,构建 Kano 模型与 AHP 层次分析法的整合框架,通过用户需求分类与多属性决策分析,量化评估 "AI 惠山泥人" 与 "传统惠山泥人" 的竞争力。研究发现,AI 泥人在成本、创新设计等期望属性上优势显著,而传统泥人需聚焦工艺优化。模型为非遗产品的现代化转型提供了数据驱动的决策范式,代码框架可复用于同类文化遗产的保护与创新。
2025-05-30 00:33:34
891
原创 《面向交通走廊的氢能站选址优化研究》结论报告
《面向交通走廊的氢能站选址优化研究》报告以京津冀-山东城市群为研究对象,提出了一种基于多目标遗传算法的加氢站选址优化模型,旨在解决覆盖需求、成本控制和服务效率等问题。研究通过设定适应度函数,结合遗传算法参数,最终确定了天津和济南两处加氢站的最优选址方案,覆盖率达92.3%,建设成本为218,500元,平均服务距离为8.7km。研究验证了走廊优先策略的有效性,并强调了多目标优化的必要性。此外,研究还提出了理论创新和工程应用价值,同时指出了当前局限和未来研究方向,如考虑动态因素和地形约束,以及引入实时优化和混合
2025-05-16 00:31:51
920
原创 哈夫曼树原理与 C++ 实现:从构造到编码的完整指南
哈夫曼树是一种带权路径长度最短的二叉树,广泛应用于数据压缩领域。其核心思想是通过贪心算法,将权值较大的节点赋予更短的路径,从而减少整体数据存储或传输的成本。本文详细介绍了哈夫曼树的构造过程、总费用计算方法,并通过C++代码实现了完整的算法流程。构造过程中,通过最小优先队列不断合并权值最小的两个节点,生成新的父节点,直到队列中只剩一个根节点。总费用为每次合并的父节点权值之和。代码实现包括节点结构定义、哈夫曼树构造、编码生成及内存管理。运行结果显示,构造哈夫曼树的总费用为59,并输出了各权值对应的哈夫曼编码。哈
2025-05-15 15:07:26
726
原创 Python异常处理:深入理解try和except结构
本文全面解析Python异常处理机制,通过实例代码演示try/except/else/finally结构的用法,助你编写健壮的Python程序。
2025-05-06 21:52:33
355
原创 腾讯云ide的C/C++模板编译器环境配置失败
Clang 18.1.3 尝试链接GCC 14的库,若系统中实际安装的是其他版本(如GCC 11),会导致路径不兼容。关联GCC标准库,但路径格式异常(如多级。通过以上步骤,可修复因标准库路径缺失导致的。符号),导致无法解析真实路径。输出中多个路径被标记为。
2025-05-02 16:53:21
270
原创 蓝桥301实现基数排序
代码优势正确性:通过字符串处理简化了按位操作,稳定分桶确保排序正确。鲁棒性:处理全零情况和前导零的去除逻辑完善。潜在限制仅限非负整数:未处理负数,但题目未要求。字符串转换开销:对极大整数可能影响性能,但符合题目约束。适用场景整数位数差异较小的数据集。需要稳定排序且数值范围可控的场景。
2025-03-28 13:51:13
406
原创 蓝桥1216走迷宫
代码潜在问题数组越界a和v的大小仅为100x100,当输入n或m超过 99 时越界。步数计算错误:起点步数初始化为0,导致输出比实际格子数少 1(例如起点到终点需8格子,代码输出7边界检查缺失:未验证tx和ty是否在[1, n]和[1, m]范围内,可能导致越界访问。障碍物检查缺失:未提前检查起点/终点是否为障碍物,可能错误处理。改进建议将数组大小改为避免越界。起点步数初始化为1,或在输出时+1。添加tx和ty的范围检查。适用场景小规模迷宫(
2025-03-23 20:53:23
318
原创 蓝桥782拼数
代码优势正确性:直接比较拼接后的结果,避免循环比较可能导致的错误。简洁性:逻辑清晰,代码量少,易于维护。潜在注意点全零处理:若所有输入为0,应避免输出多个前导零(题目数据保证正整数,无需处理)。适用场景需要将数字拼接成最大数的场景,如生成交易编号、资源排序等。
2025-03-23 19:40:55
260
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人