numpy学习
# 第一步导包使用numpy库
import numpy as np
1.ndarray对象
1.基础使用
# 创建ndarray对象方式1
arr = np.array([列表]/[元组]/ndarray(也可以)/嵌套列表或元组(创建多维的))
# 创建ndarray对象方式2
#生成从0到数字[0,6)的ndarray对象,对象可以是python的类型也可以是np的类型
arr = np.arange(6,dtype = 数据类型)
- 对于ndarray对象可以使用reshape(行,列),来改变对象的维度
arr.reshape(2,3)
# 变成一个2行3列的二维矩阵
特殊的创建
创建全零的ndarray
np.zeros(长度)
创建全1的ndarray
np.ones(长度)
等比数列
np.logspace(开始幂,结束幂,个数,base=底数)
等差数列
np.linspace(开始值,结束值,个数,endpoint = True(True包括结束值,False不包括))
下图式包括的
生成正态分布
arr1 = np.random.randn(行数,列数)
生成start到end的均值分布的ndarray
arr1 = np.random.uniform(开始值,结束值,size=(行数,列数))
2.属性介绍
arr1 = np.array([[1,2,3],[1,2,3]],dtype=np.int64)
print(arr1)
# 常用的属性
print(f'arr1的维度:{arr1.ndim}')
print(f'arr1的形状:{arr1.shape}')
print(f'arr1的元素个数:{arr1.size}')
print(f'arr1的类型{type(arr1)}')
print(f'arr1中元素的类型{arr1.dtype}')
print(f'元素大小为{arr1.itemsize}字节')
[[1 2 3]
[1 2 3]]
arr1的维度:2
arr1的形状:(2, 3)
arr1的元素个数:6
arr1的类型<class 'numpy.ndarray'>
arr1中元素的类型int64
元素大小为8字节
3.常用函数
1.基础函数
ceil()向上取整
对于ndarray数组中每一个元素向上取整
np.ceil(数值/ndarray)
floor()向下取整
对于ndarray数组中每一个元素下取整
np.floor(数值/ndarray)
rint()四舍五入
np.rint(数值/ndarray)
isnan()数组是否存在NaN(Not a Number)
np.isnan(ndarray)
# np.nan对于这个会return True
multiply()矩阵
逐个相同行列的元素相乘
print(np.multiply(arr1,arr1))
divide()矩阵除
逐个相同行列的元素相除
print(np.divide(arr1,arr1))
where()判断
矩阵中的每个元素判断,满足元素设为’哈’,不满足设置为’呵’,类似三元式
print(np.where(arr1>1,'哈','呵'))
2.统计函数
1.和
ndarray.sum(axis=0/1) #统计和
等于0时,每列的和
等于1时,每行的和
2.累加和
# 变成一维的一个一个加起来
print(arr2.cumsum())
# axis=0是一列一列加起来放到从上到下累加
print(arr2.cumsum(axis=0))
# axis=1是一行一行加起来从左到右累加
print(arr2.cumsum(axis=1))
3.去重函数
arr3 = [[1,2,1],[2,4,1]]
#去重后对原函数无影响
result = np.unique(arr3)
print(result)
print(arr3)
[1 2 4] #去重后的数组
[[1, 2, 1], [2, 4, 1]]
4.排序函数
# np.sort 返回新数组,对原数组无影响
arr4 = [2,4,1,3,5,9,12,5,6]
print(np.sort(arr4))
print(arr4)
[ 1 2 3 4 5 5 6 9 12]
[2, 4, 1, 3, 5, 9, 12, 5, 6]
# 数组.sort() 会影响原数组
arr4.sort()
print(arr4)
[1, 2, 3, 4, 5, 5, 6, 9, 12]
5.矩阵乘A乘B
A的矩阵列 = B的矩阵行
# 方式1
np.dot(arr1,arr2)
# 方式2
arr1.dot(arr2)
# 方式3
arr1 @ arr2
总结
numpy的学习为之后pandas更好的处理数据打基础~