题目
在一个数组中,有一种数出现了奇数次,其余数都出现了偶数次,找到这种数
例:
[1,1,4] ==> 4
[1] ==> 1
[2,3,6,3,1,2,1] ⇒ 6
解析
因为N^N=0; N^0=N。所以
0^N^N^…^N^N(偶数个N)=0;
0^N^N^…^N(奇数个N)=N
由于异或是满足结合律的((A^B)^C = A^(B^C)),所以
0^M^N^…^M^N(偶数个N,偶数个M) = 0;
0^M^N^…^M^N^N(奇数个N,偶数个M) = N
假设此数组为:
[4,4,4,5,5,3,3,7,7,7,7,1,1,1,1]
0异或所有的数,偶数个数的数互相异或的结果为0,所以结果就是那个奇数个数的数
代码
public static void printOddTimesNum1(int[] arr) {
int eor = 0;
for (int i = 0; i < arr.length; i++) {
eor ^= arr[i];
}
System.out.println(eor);
}