
深度学习界面系统
文章平均质量分 97
此专栏专用于人工智能和系统创新的设计与实现。
ZZY_dl
人工智能领域优质作者|阿里云专家博主|【专注人工智能领域各种技术研究、分享和交流】
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于YOLOV8/10/11/12的交通标志实时检测系统【训练和系统源码+PySide6+数据集+系统文档+包运行】
《基于YOLOv12的交通标志实时检测系统》【系统概述】本文展示了一个基于YOLOv12的交通标志检测系统,提供了完整的GUI交互界面,支持图片、视频和摄像头实时检测功能。系统可自动识别交通标志,并显示检测耗时、目标数量及位置信息等关键数据。【核心功能】1)可视化界面支持背景/标题自定义;2)多模型选择与权重初始化;3)检测结果可视化展示与导出;4)实时视频流处理能力。系统检测效果直观,平均处理速度达45FPS。【技术实现】采用PySide6构建GUI,结合Ultralytics框架实现YOLO原创 2025-01-03 15:50:04 · 1098 阅读 · 0 评论 -
基于YOLOv10的反光衣头盔目标实时检测系统【训练和系统源码+Pyside6+数据集+系统文档参考+包运行】
基于YOLOv10的反光衣头盔佩戴实时检测系统【训练和系统源码+Pyside6+数据集+包运行】图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将YOLO格式数据集images和labels放入指定目录下,然后修改”yolov10\my_file\object_detection\dataset_cfg”下的data.yaml文件中的path路径指向datasets文件夹(绝对路径)。原创 2024-12-20 10:43:59 · 896 阅读 · 0 评论 -
基于YOLOV8/V11的明厨亮灶老鼠实时检测系统【训练和系统源码+Pyside6+数据集+系统文档+包运行】
反光衣头盔佩戴实时检测系统通过先进的图像处理和人工智能技术,实时检测工业场景下反光衣和头盔目标的情况,保障工人安全。本文基于YOLOv10算法框架,通过4409张工业场景的训练图片(其中3768张训练集,641张验证集),训练出一个可用于检测工业场景下反光衣和头盔佩戴【包含未穿反光衣、穿反光衣、未佩戴头盔、佩戴头盔共计4类目标】情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv10的反光衣头盔佩戴实时检测系统,可用于实时检测反光衣和头盔佩戴情况,以及时告警。原创 2024-10-03 12:58:30 · 1316 阅读 · 0 评论 -
基于YOLOv10的无人机巡航小目标实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
无人机巡航小目标实时检测系统通过先进的图像处理和人工智能技术,实时检测无人机场景下小目标的情况,促进安全出行。本文基于YOLOv10算法框架,通过7444张真实无人机场景的训练图片(其中6471张训练集,973张验证集),训练出一个可用于检测无人机场景下人和不同车型【包含行人、自行车、汽车、面包车、卡车、三轮车、遮阳三轮车、公交车、摩托车共计9类目标】情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv10的无人机巡航小目标实时检测系统。原创 2024-08-11 21:26:07 · 2320 阅读 · 1 评论 -
基于YOLOV8的骑行智能守护实时检测系统【训练和系统文档及源码+Pyside6+数据集+包运行】
骑行智能守护实时检测系统通过先进的图像处理和人工智能技术,实时检测电动车和车上人员头盔佩戴情况,促进安全出行,减少交通事故风险。本文基于YOLOv8算法框架,通过5448张真实道路场景的训练图片(其中4358张训练集,1090张验证集),训练出一个可用于检测电动车及车上人员头盔情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的骑行智能守护实时检测系统,可用于实时检测电动车及车上人员头盔情况,以及时告警。系统背景和标题修改模型权重导入和初始化。原创 2024-07-13 00:03:22 · 1358 阅读 · 0 评论 -
基于YOLOv8的钢铁缺陷实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
钢铁缺陷实时检测系统通过先进的图像处理和人工智能技术,实时检测钢铁缺陷目标,提高生产效率和产品质量,减少次品率和生产成本,确保钢铁制品的安全性和可靠性,促进工业生产的可持续发展。本文基于YOLOv8算法框架,通过1800张训练图片(其中1600张训练集,200张验证集),训练出一个可用于检测钢铁缺陷情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的钢铁缺陷实时检测系统,可用于实时检测钢铁缺陷情况,以及时告警。该系统是基于Python和Pyside6开发。原创 2024-04-21 22:07:32 · 1944 阅读 · 0 评论 -
基于YOLOv8的河道漂浮物实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
河道漂浮物实时检测系统通过先进的图像处理和人工智能技术,及时探测和清除水面垃圾,以维护水体的生态平衡和环境卫生,有助于防止污染物扩散,确保河流的持续健康和清洁。本文基于YOLOv8算法框架,通过2400张训练图片(其中1920张训练集,480张验证集),训练出一个可用于检测河道漂浮物情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的河道漂浮物实时检测系统,可用于实时检测河道漂浮物情况,以及时告警。该系统是基于Python和Pyside6开发,并支持以下功能特性。原创 2024-04-14 00:30:47 · 3373 阅读 · 1 评论 -
基于YOLOv8的工业安全帽实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
工业安全帽实时检测系统通过先进的图像处理和人工智能技术,确保工作场所的安全,减少因未佩戴或不正确佩戴安全帽导致的意外伤害,降低工伤事故率。本文基于YOLOv8算法框架,通过7581张训练图片(其中6064张训练集,1517张验证集),训练出一个可用于检测工业安全帽和人头情况的有效模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的工业安全帽实时检测系统,可用于实时检测安全帽佩戴的情况,以及时告警。该系统是基于Python和Pyside6开发,并支持以下功能特性。原创 2024-04-13 23:32:17 · 2077 阅读 · 0 评论 -
基于YOLOv8的人员跌倒实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
人员跌倒实时检测系统通过先进的图像处理和人工智能技术,实现对公共场合或特定环境中人员活动的连续监控,可针对跌倒、蹲下、站立三种状态行为进行实时检测,以便及时采取救援措施,降低伤害风险,保障人员生命安全。本文基于YOLOv8算法框架,通过4978张训练图片(其中4035张训练集,943张验证集),训练出一个可用于检测人员跌倒情况的有效检测模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的人员跌倒实时检测系统,可用于实时检测人员跌倒情况,以及时告警。该系统是基于。原创 2024-04-05 23:46:37 · 2493 阅读 · 0 评论 -
基于YOLOv8的交通车辆实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
交通车辆实时检测系统利用尖端图像处理技术,对道路情况实施连续监控。旨在提升道路安全,实时识别车辆和违规行为,辅助降低拥堵,保障行车安全,进而改善交通环境管理。本文基于YOLOv8算法框架 ,通过5830张训练图片(其中5248张训练集,582张验证集),训练出一个可用于检测交通车辆情况的有效检测模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的交通车辆实时检测系统,可用于实时检测交通车辆情况,以及时告警。该系统是基于Python和Pyside6开发,并支持以下功能特性。原创 2024-04-02 01:12:52 · 3277 阅读 · 3 评论 -
基于YOLOv8的火焰烟雾实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
火焰烟雾实时检测系统旨在实现对火源和烟雾的即时监测和警报,以预防火灾、保护生命财产安全。本文基于YOLOv8算法框架,通过6744张训练图片(其中5395张训练集,1349张验证集),训练出一个可用于检测火焰烟雾情况的有效检测模型。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的火焰烟雾实时检测系统,可用于实时检测火焰烟雾情况,以及时告警。该系统是基于Python和Pyside6开发并支持以下功能特性系统背景和标题修改模型权重导入和初始化检测置信度和IOU调节。原创 2024-03-19 19:56:43 · 6730 阅读 · 3 评论 -
基于YOLOv8的人员抽烟实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
人员抽烟实时检测系统旨在维护无烟环境,预防火灾,保护公众免受二手烟危害,并降低病毒传播风险。本文基于YOLOv8算法框架,通过2472张训练图片(其中2276张训练集,196张验证集),训练出一个可用于检测人群中抽烟情况的有效检测模型(主要用于公共场所的检测识别)。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的人员抽烟实时检测系统,可用于实时检测人群中的抽烟情况。该系统是基于Python和Pyside6开发并支持以下功能特性系统背景和标题修改模型权重导入和初始化。原创 2024-03-07 10:25:29 · 1990 阅读 · 0 评论 -
基于YOLOV8的口罩佩戴实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
口罩佩戴实时检测系统可以帮助公共安全、医疗卫生等领域的工作人员快速地识别人们是否正确佩戴口罩,提高疫情防控效率,减少病毒传播风险。本文基于YOLOv8算法框架,通过7959张训练图片(其中6367训练集,1592验证集),训练出一个可用于检测人群中口罩佩戴情况的有效识别模型(主要用于公共场所和交通枢纽的检测识别)。此外,为更好地展示算法效果,基于此模型开发了一款带GUI界面的基于YOLOv8的口罩佩戴实时检测系统,可用于实时检测人群中的口罩佩戴情况。该系统是基于Python和Pyside6开发,原创 2024-02-29 15:11:42 · 2120 阅读 · 0 评论