最大子段和--动态规划

本文介绍了一种求解最大子段和的高效算法,适用于由整数组成的序列,包括负数。通过一次遍历即可得出最大连续子序列之和,时间复杂度为O(n)。文中提供了一个具体的C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时,定义子段和为0。

要求算法的时间复杂度为O(n)。

输入格式:
输入有两行:

第一行是n值(1<=n<=10000);

第二行是n个整数。

输出格式:
输出最大子段和。

输入样例:
在这里给出一组输入。例如:

6
-2 11 -4 13 -5 -2
输出样例:
在这里给出相应的输出。例如:

20

#include<iostream>
using namespace std;
#define N 1000


int main(){
    int n;
    int a[N];
    cin>>n;
    int i;
    for( i=0;i<n;i++){
           cin>>a[i];
    }
    int sum=0,b=0;
		for(i=0;i<n;i++){
			if(b<0)b=a[i];
			else b=b+a[i];
			if(b>sum)
				sum=b;
		}
        cout<<sum<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值