- 博客(341)
- 收藏
- 关注
原创 Open3D 大场景点云水平面校准
本文介绍了一种基于激光点云数据的水平面校准方法。该方法通过分割地面点、估计地平面方程,计算当前法向量与目标法向量的旋转矩阵,实现点云数据的水平校准。文章详细说明了算法原理和实现步骤,并提供了Python代码示例,展示了如何使用Open3D和RANSAC算法进行平面拟合和坐标变换。实验结果表明,该方法能有效校正因路面不平或设备沉陷导致的点云倾斜问题,使校准后的点云与真实场景更吻合。该方法适用于车载移动测量系统和地面三维激光扫描仪获取的点云数据校准。
2025-07-06 19:27:15
18
原创 Open3D 对应点集配准的四元数法
本文提出了一种利用单位四元数实现三维点云配准的方法。算法通过最小化目标函数(4)求解最佳坐标变换,主要步骤包括:1)计算点集重心(5)(6);2)构建协方差矩阵(7);3)构造4×4矩阵(8)并求解其特征向量;4)将最大特征值对应的特征向量转换为旋转矩阵(10);5)计算平移向量(11)。实验采用Python实现,通过Open3D库处理点云数据,成功将绿色源点云配准至蓝色目标点云(如图),验证了算法的有效性。测试数据由MATLAB生成,包含3000个球面点坐标及其旋转变换
2025-07-06 19:24:32
18
原创 Open3D 对应点集配准的SVD法
本文介绍了基于SVD分解的点云配准算法原理与实现。算法通过计算两个点云的质心、中心化向量和协方差矩阵,利用奇异值分解求解旋转矩阵R和平移向量t。详细推导了目标函数的最小二乘解过程,并给出Python实现代码,使用Open3D库进行点云可视化。实验展示了初始点云和配准后的结果对比,测试数据由Matlab生成球面点集并进行旋转变换。该方法可用于三维重建等领域,相关参考文献和代码链接一并提供。
2025-07-06 19:22:59
17
原创 Open3D 提取两片点云的重叠区域和非重叠区域
本文介绍了使用Open3D库提取两片点云重叠与非重叠部分的方法。通过计算源点云与目标点云的距离,利用numpy.where()筛选距离小于阈值(0.01)的点作为重叠部分。结果显示为绿色重叠区域和红色非重叠区域。该方法简单高效,适用于点云配准、三维重建等应用场景。参考链接提供了PCL库的类似实现方案。
2025-07-06 19:21:45
16
原创 点云配准精度评价指标——均方根误差(python版本)
本文介绍了基于点云配准的均方根误差(RMSE)计算方法。首先阐述了RMSE的数学定义和评价标准,公式表明理想配准状态下对应点距离应为0。随后提供了Python代码实现,利用Open3D库读取点云数据并计算点对距离,最终输出RMSE值。实验结果表明该方法能有效评估点云配准精度,为三维重建等应用提供量化指标。文中还包含参考文献和示例数据,展示了完整的算法流程与可视化结果。
2025-07-06 19:20:35
20
原创 Open3D 计算点云的倒角距离(Chamfer Distance)
本文介绍了使用Open3D计算点云间倒角距离(Chamfer Distance)的方法。倒角距离通过计算两片点云间所有点的平均最短距离,衡量点云之间的相似度。文章提供了Python实现代码,包括读取点云数据、计算双向点距离总和、最终求取倒角距离的完整流程。示例结果显示了两片点云间的倒角距离值为0.0409665。该方法可应用于点云重建、配准等任务中的质量评估。
2025-07-06 09:59:32
22
原创 Open3D 计算点云的距离
本文介绍了使用Open3D库计算两点云间距离的方法。主要内容包括:1)compute_point_cloud_distance函数原理,该函数计算源点云每个点到目标点云的最近距离;2)算法实现源码解析,展示基于KDTree的最近邻搜索过程;3)实际应用代码示例,读取PCD文件并可视化距离大于阈值的点;4)验证结果,通过对比CloudCompare软件测量值,确认计算结果的准确性(单位为米)。该方法也可用于计算Chamfer距离,为点云处理提供了有效工具。
2025-07-06 09:58:20
15
原创 Open3D 彩色点云配准
摘要: 本文介绍了基于Open3D的彩色点云配准方法,结合颜色信息提升配准精度。首先解析了Colored ICP算法的原理,该算法通过融合几何与颜色特征优化点云对齐。随后展示了代码实现流程:读取点云数据、初始位置可视化、点对平面ICP粗配准,以及多尺度彩色ICP精配准(包括降采样、法线估计等步骤)。实验结果表明,该方法有效改善了配准效果,最终实现了两片彩色点云的高精度对齐,配准结果通过可视化直观呈现。相关测试数据和参考论文已在文中提供。
2025-07-06 09:57:17
15
原创 PCA 实现点云粗配准(python版本)
本文介绍了一种基于主成分分析(PCA)的点云初始配准方法,通过计算两组点云的主轴方向和质心坐标,估计初始旋转矩阵和平移向量。针对主轴方向可能存在反向的情况,提出8种可能的调整方案,并通过最小化配准误差选择最优变换参数。该方法为后续精配准提供良好初始值,适用于Open3D 0.18.0环境。实验结果表明,该方法能有效实现点云的粗配准,配准误差较小,为精确配准奠定基础。
2025-07-06 09:56:03
11
原创 Open3D 使用GICP对点云配准
摘要: 本文介绍了广义迭代最近点(GICP)算法的原理与实现。GICP将ICP和Point-to-plane ICP结合到概率框架中,通过协方差矩阵优化配准过程,提高鲁棒性。算法流程包括构建高斯分布模型、定义配准误差和计算变换矩阵。基于Open3D库的Python实现展示了点云配准过程,并通过可视化对比了原始点云和配准结果。实验表明,GICP能有效提升配准精度(RMSE从0.029降至0.002),适用于更广泛的点云配准场景。代码开源并附有详细注释,便于复现和应用。
2025-07-06 09:54:55
12
原创 Open3D 鲁棒损失函数优化的ICP算法
《基于鲁棒损失函数的ICP算法改进与实现》 本文探讨了ICP算法中通过鲁棒损失函数优化配准效果的原理与实现。核心在于利用权重函数w()过滤离群点,将非凸优化问题转化为迭代重加权最小二乘问题(公式3)。Open3D提供了多种损失函数(CauchyLoss、HuberLoss等)的实现接口,本文以L2Loss为例展示了点到面ICP配准的完整代码流程。实验结果表明,该方法能有效提高配准精度,初始位置评估和变换后的可视化对比验证了算法的有效性。文章还提供了测试数据下载链接,便于读者复现实验。
2025-07-06 09:53:26
9
原创 Open3D 多幅点云配准
本文介绍了基于Open3D的多视配准方法,通过姿态图估计实现多个点云在全局空间中的对齐。主要内容包括:1) 多视配准以点云为输入,输出使点云对齐的刚性变换矩阵;2) 使用姿态图建模,包含节点(几何体及其变换矩阵)和边(相邻几何体的变换关系);3) 实现过程分为两步:先通过ICP进行两两点云配准,再构建包含odometry edges和loop closure edges的姿态图。实验代码展示了从三幅未对齐点云出发,经过下采样、两两配准,最终构建姿态图的过程。该方法对局部和全局配准的鲁棒性进行了区分处理,并利
2025-07-06 09:52:24
20
原创 Open3D 点到面的ICP配准算法
摘要:本文介绍了点到平面ICP算法的原理与实现。该算法通过最小化源点云到目标点云对应点所在平面的距离,比传统点到点ICP收敛更快、稳定性更好。文章详细阐述了算法原理、Open3D中的关键函数,并提供了完整的Python代码实现流程。实验结果表明,该方法能有效实现点云配准,配准后的点云重叠区域显著增加。测试数据与代码均已公开,方便读者复现与验证。
2025-07-06 09:48:44
367
原创 Open3D 点对点的ICP配准算法
ICP配准算法通过迭代计算刚体变换(平移和旋转),最小化两帧点云之间的距离误差。算法流程包括施加初始变换、寻找最近邻点对、求解最优变换矩阵,并判断收敛条件。实现中利用Open3D库的registration_icp函数进行点对点配准,通过fitness和RMSE指标评估配准质量。实验结果显示,初始点云存在明显偏移,经过ICP配准后两帧点云成功对齐。该算法适用于三维点云数据的精确配准,在激光点云处理等领域具有重要应用价值。
2025-07-06 09:42:45
327
原创 PCL 生成任意椭球点云
本文系统介绍了椭球的数学定义和参数化方法。首先给出标准椭球方程,定义三个半轴长度;接着讨论任意位置和姿态的椭球参数化,包括中心点、半轴长度和方向向量;然后推导通用参数方程,通过方位角和极角描述椭球表面点坐标,并说明从球面到椭球的映射方法;最后提供了C++代码实现,展示如何生成椭球点云并进行可视化。全文涵盖了椭球从理论定义到工程应用的全过程,为三维几何建模提供实用参考。
2025-06-23 08:50:59
39
原创 PCL 深度图转点云(详细过程实现)
转换方向核心公式点云→深度图深度图→点云分辨率影响$ N_{\text{像素}} = \lfloor \frac{\text{物理尺寸}}{\Delta} \rfloor + 1 $
2025-06-23 08:22:05
269
原创 PCL点云数据转深度图(C++详细版)
本文介绍了将3D点云转换为2D深度图像的关键步骤与算法原理。首先通过边界框计算确定点云空间范围,随后设置分辨率将点云映射到像素坐标,并通过最近点法或平均深度法填充深度值。文中提供了数学公式(如边界框尺寸计算、像素坐标映射)和代码实现(基于PCL和OpenCV),涵盖边界处理、深度填充等细节。该方法可应用于三维重建、目标识别和SLAM系统,核心流程包括边界框计算、分辨率设置、坐标投影和深度填充。代码示例展示了从PCD文件读取点云到生成深度图的具体实现。
2025-06-23 08:15:33
118
原创 Open3D 快速全局配准(Fast Global Registration)
Open3D 快速全局配准(Fast Global Registration)
2025-01-04 09:07:35
125
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人