OpenCV C++人脸识别

OpenCV C++人脸识别

程序说明

// 程序描述:来自OpenCV安装目录下Samples文件夹中的官方示例程序-人脸识别
// 源码路径:opencv\sources\samples\cpp\tutorial_code\objectDetection
// 操作系统: Windows 10 64bit
// 开发语言: C++
// IDE 版 本:Visual Studio 2019
// OpenCV版本:4.20
//------------------------------------------------------------------------------------------------

//注意,需要把"haarcascade_frontalface_alt.xml"和"haarcascade_eye_tree_eyeglasses.xml"这两个文件复制到工程路径下

/**

  • @file ObjectDetection.cpp
  • @author A. Huaman ( based in the classic facedetect.cpp in samples/c )
  • @brief A simplified version of facedetect.cpp, show how to load a cascade classifier and how to find objects (Face + eyes) in a video stream
    */

### 使用 OpenCVC++ 实现人脸识别 #### 准备工作 为了成功运行人脸识别程序,需确保环境配置正确。当前使用的 VMware 版本为 17,操作系统为 Ubuntu 20.04.1,以及 OpenCV 4.2.0 和百度云人脸识别 SDK 已经安装并配置好[^1]。 #### 加载预训练模型 OpenCV 提供了几种不同的人检测方法,其中最常用的是基于 Haar 级联分类器的方法。该分类器可以通过加载预先训练好的 XML 文件来初始化: ```cpp #include <opencv2/opencv.hpp> using namespace cv; CascadeClassifier face_cascade; face_cascade.load("/path/to/haarcascade_frontalface_alt.xml"); ``` 此代码片段用于加载一个人检测的级联分类器文件 `haarcascade_frontalface_alt.xml`[^2]。 #### 捕获视频帧并与Haar特征匹配 通过摄像头捕获实时图像数据,并将其转换成灰度图以便处理: ```cpp VideoCapture cap(0); // 打开默认相机设备 Mat frame, gray_frame; while(true){ cap >> frame; // 获取一帧画面 cvtColor(frame, gray_frame, COLOR_BGR2GRAY); std::vector<Rect> faces; face_cascade.detectMultiScale(gray_frame, faces); for(size_t i=0;i<faces.size();i++){ rectangle(frame, Point(faces[i].x, faces[i].y), Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height), Scalar(255,0,0)); } imshow("Face Detection",frame); if(waitKey(30)>=0) break; } cap.release(); destroyAllWindows(); ``` 上述代码实现了从摄像机读取每一帧的画面,在每帧画面上执行人检测算法,并用矩形标记出所有人位置。 #### 调用人脸识别服务接口 当捕捉到清晰的人图片之后,可以调用百度云提供的人脸识别 API 接口来进行身份验证或其他操作。这通常涉及到将截取下来的部区域保存为临时文件或将二进制流发送给远程服务器进行分析。 ```cpp // 假设已获得一张包含单张人的照片 img_face imwrite("/tmp/captured_face.jpg", img_face); // 构建 HTTP 请求体... std::string url = "https://aip.baidubce.com/rest/..."; std::map<std::string,std::string> params; params["image"] = base64_encode(read_file_to_string("/tmp/captured_face.jpg")); // ...其他参数设置... auto response = http_post(url,params); json jres = json::parse(response.text()); if(jres.contains("error_msg") && jres["error_msg"]=="SUCCESS"){ cout << "Recognition succeeded!" << endl; } else { cerr << "Error occurred during recognition." << endl; } ``` 这段伪代码展示了如何准备要上传给人脸识别API的数据包,并解析返回的结果以判断请求是否成功。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R-G-B

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值