OpenCV Python——背景减除 -- BackgroundSubtractorMOG2

在很多基础应用中背景检出都是一个非常重要的步骤。

例如顾客统计,使用一个静态摄像头来记录进入和离开房间的人数;或者是交通摄像头,需要提取交通工具的信息等。

在所有的这些例子中,首先要将人或车单独提取出来。
技术上来说,我们需要从静止的背景中提取移动的前景

如果你有一张背景(仅有背景不含前景)图像,比如没有顾客的房间,没有交通工具的道路等,那就好办了。我们只需要在新的图像中减去背景就可以得到前景对象了。但是在大多数情况下,我们没有这样的(背景)图像,所以我们需要从我们有的图像中提取背景。如果图像中的交通工具还有影子的话, 那这个工作就更难了,因为影子也在移动,仅仅使用减法会把影子也当成前景。 真是一件很复杂的事情

为了实现这个目的科学家们已经提出了几种算法。
OpenCV 中已经包含了其中三种比较容易使用的方法

一、BackgroundSubtractorMOG(弃用)

这是一个以混合高斯模型为基础的前景/背景分割算法。它是 P.KadewTraKuPong 和 R.Bowden 在 2001 年提出的。

它使用 K(K=3 或 5)个高斯分布混合对背景像素进行建模。使用这些颜色(在整个视频中)存在时间的长短作为混合的权重。背景的颜色一般持续的时间最长,而且更加静止。

一个像素怎么会有分布呢?在 x,y平面上一个像素就是一个像素,没有分布,但是我们现在讲的背景建模是基于时间序列的,因此每一个像素点所在的位置在整个时间序列中就会有很多值,从而构成一个分布

在编写代码时,我们需要使用函数:cv2.createBackgroundSubtractorMOG() 创建一个背景对象。这个函数有些可选参数,比如要进行建模场景的时间长度,高斯混合成分的数量,阈值等。将他们全部设置为默认值。然后在整个视频中我们是需要使用backgroundsubtractor.apply() 就可以得到前景的掩模了

移动的物体会被标记为白色,背景会被标记为黑色的

前景的掩模就是白色的了

import numpy as np
import cv2
cap = cv2.VideoCapture(0)
fgbg = cv2.createBackgroundSubtractorMOG()
while(1):
    ret, frame = cap.read()
    fgmask = fgbg.apply(frame)
    cv2.imshow('frame',fgmask) 
    if k == 27:
        break
cap.release()
cv2.destroyAllWindows()

二、BackgroundSubtractorMOG2

这个也是以高斯混合模型为基础的背景/前景分割算法。它是以 2004 年 和 2006 年 Z.Zivkovic 的两篇文章为基础的。这个算法的一个特点是它为每 一个像素选择一个合适数目的高斯分布。(上一个方法中我们使用是 K 高斯分布)。

这样就会对由于亮度等发生变化引起的场景变化产生更好的适应。

和前面一样我们需要创建一个背景对象。但在这里我们我们可以选择是否检测阴影。如果 detectShadows = True(默认值),它就会检测并将影子标记出来,但是这样做会降低处理速度。影子会被标记为灰色。

import numpy as np
import cv2
cap = cv2.VideoCapture(0)
fgbg = cv2.createBackgroundSubtractorMOG2()
while(1):
    ret, frame = cap.read()
    fgmask = fgbg.apply(frame)
    cv2.imshow('frame',fgmask) 
    k = cv2.waitKey(30) & 0xff
    if k == 27:
        break
cap.release()
cv2.destroyAllWindows()

BackgroundSubtractorMOG2算法的两个改进点
-阴影检测
-速度快了一倍

三、BackgroundSubtractorGMG

此算法结合了静态背景图像估计和每个像素的贝叶斯分割。这是 2012 年 Andrew_B.Godbehere,Akihiro_Matsukawa 和 Ken_Goldberg 在文章 中提出的。
它使用前面很少的图像(默认为前 120 帧)进行背景建模。使用了概率前 景估计算法(使用贝叶斯估计鉴定前景)。这是一种自适应的估计,新观察到的 对象比旧的对象具有更高的权重,从而对光照变化产生适应。一些形态学操作 如开运算闭运算等被用来除去不需要的噪音。在前几帧图像中你会得到一个黑 色窗口。
对结果进行形态学开运算对与去除噪声很有帮助

import numpy as np
import cv2
cap = cv2.VideoCapture('vtest.avi')
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
fgbg = cv2.createBackgroundSubtractorGMG() 
while(1):
    ret, frame = cap.read()
    fgmask = fgbg.apply(frame)
    fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
    cv2.imshow('frame',fgmask) 
    k = cv2.waitKey(30) & 0xff
    if k == 27:
        break
cap.release()
cv2.destroyAllWindows()
### OpenCV Python包的功能对比 #### opencv-pythonopencv-python-headless 的区别 `opencv-python` 是完整的OpenCV库,包含了图形界面功能以及所有其他特性。此版本适合于开发环境,在其中可能需要显示图像窗口或视频流等功能[^1]。 相比之下, `opencv-python-headless` 则是一个精简版的OpenCV库,去除了依赖Qt或其他GUI框架的部分。这意味着它不提供任何可视化工具,比如创建窗口展示图片的能力。这种轻量级配置非常适合服务器端部署或是不需要用户交互的应用场景。 #### opencv-contrib-pythonopencv-contrib-python-headless 的特点 对于希望利用额外模块扩展核心功能集的情况,则可以选择安装带有contrib附加组件的版本——即`opencv-contrib-python` 或者其无头版本 `opencv-contrib-python-headless`. 这些贡献模块提供了实验性的算法和其他非官方维护但广泛使用的插件,增加了更多高级计算机视觉处理能力[^2]. 值得注意的是,“headless”变体同样移除了对桌面环境的支持,因此如果项目仅需运行在后台服务上而无需渲染UI元素的话,那么选用此类别下的软件包会更加高效合理[^3]. ```bash # 安装命令示例 pip install opencv-python # 基础版含GUI支持 pip install opencv-python-headless # 轻量化基础版不含GUI pip install opencv-contrib-python # 扩展版含GUI支持及额外模块 pip install opencv-contrib-python-headless # 轻量化扩展版不含GUI及额外模块 ``` 综上所述: | 特性/包名 | GUI 支持 | 额外模块 | | --- | --- | --- | | opencv-python | ✅ | ❌ | | opencv-python-headless | ❌ | ❌ | | opencv-contrib-python | ✅ | ✅ | | opencv-contrib-python-headless | ❌ | ✅ |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值