一起来做题~欢乐赛6题解

本文探讨了涉及位运算、字符串处理及算法策略的题目,包括位操作求解、字符串模式匹配、差分+二分法的应用,以及动态规划在dp问题中的解决方案。通过实例解析,提升读者的思维和实践能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这次题的还是比较注重思维(狗头

A

这道题我已经做过三次相同解法的题了
题型很常见(位运算

#include <algorithm>
#include <iostream>

using namespace std;

long long a, b, t;

int main()
{
    cin >> t;
    while(t --)
    {
        cin >> a >> b;
        while ((a | (a + 1)) <= b)
            a |= (a + 1);
        cout << a << endl;
    }
    return 0;
}

B

#include <algorithm>
#include <iostream>

using namespace std;

int st[10];

int main()
{
    string a;
    cin >> a;
    int len = a.size() - 1;
    //cout << a[len] << endl;
    if (a[len] == '4')
    {
        for (int k = 1; k <= 3; k ++)
        {
            for (int j = 0; j <= len - 1; j ++) cout << a[j];
            cout << k << endl;
        }
    }
    else{
        for (int i = len; i > 0; i --)
        {
            if (!st[a[i]- '0']) {
                st[a[i] - '0'] = 1;
                for (int j = 0; j < i; j ++) cout << a[j];
                cout << 4 << endl;
            }
        }
    }
    return 0;
}

C

雀食要多刷题
我看出来要用差分+二分。。
但是不知道怎么用(狗头

#include <algorithm>
#include <iostream>

using namespace std;

const int N = 1e6 + 10;
typedef long long ll;
int y[N], x[N], z[N], a[N], b[N], c[N];
int n, m;

int check (int k)
{
    for (int i = 1; i <= n; i ++) z[i] = y[i];
    for (int i = 1; i <= k; i ++)
    {
        z[b[i]] -= a[i];
        z[c[i] + 1] += a[i];
    }
    ll ans = 0;
    for (int i = 1; i <= n; i ++)
    {
        ans += z[i];
        if (ans < 0) return 1;
    }
    return 0;
}

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i ++) cin >> x[i];
    for (int i = 1; i <= n; i ++) y[i] = x[i] - x[i - 1];
    for (int i = 1; i <= m; i ++)
    {
        cin >> a[i] >> b[i] >> c[i];
    }
    int l = 1, r = m;
    while (l <= r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid - 1;
        else l = mid + 1;
    }
    if (check(l)) {
        cout << -1 << endl;
        cout << l << endl;
    }
    else cout << '0' << endl;
    return 0;
}

D

dp

#include <algorithm>
#include <iostream>

using namespace std;

const int N = 510;
int f[N][N][N];
int n, m;
char s1[N], s2[N];

int main()
{
    cin >> n >> m;
    cin >> s1 + 1 >> s2 + 1;
    f[0][0][0] = 1;
    for (int i = 0; i <= n; i ++)
    {
        for (int j = 0; j <= m; j ++)
        {
            for (int k = 0; k <= n; k ++)
            {
                int l = i + j - k;
                if (l < 0 || l > m) continue;
                if (i && k && s1[i] == s1[k]) f[i][j][k] += f[i - 1][j][k - 1];
                if (i && l && s1[i] == s2[l]) f[i][j][k] += f[i - 1][j][k];
                if (j && k && s2[j] == s1[k]) f[i][j][k] += f[i][j - 1][k - 1];
                if (j && l && s2[j] == s2[l]) f[i][j][k] += f[i][j - 1][k];
                f[i][j][k] %= 1024523;
            }
        }
    }
    cout << f[n][m][n] % 1024523;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值