这次题的还是比较注重思维(狗头
A
这道题我已经做过三次相同解法的题了
题型很常见(位运算
#include <algorithm>
#include <iostream>
using namespace std;
long long a, b, t;
int main()
{
cin >> t;
while(t --)
{
cin >> a >> b;
while ((a | (a + 1)) <= b)
a |= (a + 1);
cout << a << endl;
}
return 0;
}
B
#include <algorithm>
#include <iostream>
using namespace std;
int st[10];
int main()
{
string a;
cin >> a;
int len = a.size() - 1;
//cout << a[len] << endl;
if (a[len] == '4')
{
for (int k = 1; k <= 3; k ++)
{
for (int j = 0; j <= len - 1; j ++) cout << a[j];
cout << k << endl;
}
}
else{
for (int i = len; i > 0; i --)
{
if (!st[a[i]- '0']) {
st[a[i] - '0'] = 1;
for (int j = 0; j < i; j ++) cout << a[j];
cout << 4 << endl;
}
}
}
return 0;
}
C
雀食要多刷题
我看出来要用差分+二分。。
但是不知道怎么用(狗头
#include <algorithm>
#include <iostream>
using namespace std;
const int N = 1e6 + 10;
typedef long long ll;
int y[N], x[N], z[N], a[N], b[N], c[N];
int n, m;
int check (int k)
{
for (int i = 1; i <= n; i ++) z[i] = y[i];
for (int i = 1; i <= k; i ++)
{
z[b[i]] -= a[i];
z[c[i] + 1] += a[i];
}
ll ans = 0;
for (int i = 1; i <= n; i ++)
{
ans += z[i];
if (ans < 0) return 1;
}
return 0;
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i ++) cin >> x[i];
for (int i = 1; i <= n; i ++) y[i] = x[i] - x[i - 1];
for (int i = 1; i <= m; i ++)
{
cin >> a[i] >> b[i] >> c[i];
}
int l = 1, r = m;
while (l <= r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid - 1;
else l = mid + 1;
}
if (check(l)) {
cout << -1 << endl;
cout << l << endl;
}
else cout << '0' << endl;
return 0;
}
D
dp
#include <algorithm>
#include <iostream>
using namespace std;
const int N = 510;
int f[N][N][N];
int n, m;
char s1[N], s2[N];
int main()
{
cin >> n >> m;
cin >> s1 + 1 >> s2 + 1;
f[0][0][0] = 1;
for (int i = 0; i <= n; i ++)
{
for (int j = 0; j <= m; j ++)
{
for (int k = 0; k <= n; k ++)
{
int l = i + j - k;
if (l < 0 || l > m) continue;
if (i && k && s1[i] == s1[k]) f[i][j][k] += f[i - 1][j][k - 1];
if (i && l && s1[i] == s2[l]) f[i][j][k] += f[i - 1][j][k];
if (j && k && s2[j] == s1[k]) f[i][j][k] += f[i][j - 1][k - 1];
if (j && l && s2[j] == s2[l]) f[i][j][k] += f[i][j - 1][k];
f[i][j][k] %= 1024523;
}
}
}
cout << f[n][m][n] % 1024523;
return 0;
}