🔥【DeepLabv3+改进专栏!探索语义分割新高度】
🌟 你是否在为图像分割的精度与效率发愁?
📢 本专栏重磅推出:
✅ 独家改进策略:融合注意力机制、轻量化设计与多尺度优化
✅ 即插即用模块:ASPP+升级、解码器
PS:订阅专栏提供完整代码
论文简介
最近,基于Transformer的方法在各种视觉任务中取得了令人印象深刻的结果,包括通过利用自注意力(SA)进行特征提取的图像超分辨率(SR)。然而,在大多数现有的基于Transformer的模型中,SA的计算非常昂贵,而一些采用的操作可能对SR任务来说是多余的。这限制了SA计算的范围,从而限制了SR性能。在这项工作中,我们提出了一种用于图像SR的高效长距离注意力网络(ELAN)。具体来说,我们首先采用移位卷积(shift-conv)有效提取图像局部结构信息,同时保持与1x1卷积相同的复杂度水平,然后提出了一个组级多尺度自注意力(GMSA)模块,该模块使用不同的窗口大小在非重叠的特征组上计算SA,以利用长距离图像依赖性。然后通过简单地将两个移位卷积与GMSA模块级联,构建了一个高效的长距离注意力块(ELAB),并通过使用共享注意力机制进一步加速。我们的ELAN遵循一个相当简单的设计,通过顺序级联ELABs。大量实验表明,ELAN在性能上甚至优于基于Transformer的SR模型,但复杂度显著降低。
<