EfficientNet-Lite 结构图及代码实现

结构图

在这里插入图片描述

代码

import math
import torch
from torch import nn
import torch.functional as F


efficientnet_lite_params = {
   
   
    # 
### 如何使用 EfficientNet-Lite 进行图像分类 为了实现基于 EfficientNet-Lite 的图像分类,需先安装 TensorFlow Lite 解释器以及必要的依赖库。接着,加载预训练的 EfficientNet-Lite 模型并准备输入数据。最后,执行推理过程并对结果进行解析。 #### 安装依赖项 确保环境中已安装最新版的 TensorFlow 及其 Lite 版本: ```bash pip install tensorflow==2.10.0 ``` 对于 Python 用户而言,还需要安装 `tflite_runtime` 或者直接利用完整的 TensorFlow 包来运行 TFLite 模型[^4]。 #### 加载模型与初始化解释器 获取官方发布的 EfficientNet-Lite 模型文件(通常为 `.tflite`),并通过以下方式创建解释器实例: ```python import numpy as np import tensorflow as tf interpreter = tf.lite.Interpreter(model_path="efficientnet_lite.tflite") interpreter.allocate_tensors() ``` 此段代码会分配内存给张量,并准备好用于后续操作的数据结构。 #### 准备输入数据 在实际应用前,要按照特定的要求处理待预测图片,使之符合模型预期格式。一般情况下,这意味着调整大小至固定尺寸、归一化像素值范围等预处理工作: ```python from PIL import Image def preprocess_image(image_path, input_size=(224, 224)): img = Image.open(image_path).convert('RGB') img_resized = img.resize(input_size) img_array = np.array(img_resized) / 255. return np.expand_dims(img_array, axis=0).astype(np.float32) input_data = preprocess_image("path_to_your_image.jpg") ``` 上述函数接受一张图片路径作为参数,返回经过适当转换后的 NumPy 数组形式的批量输入[^1]。 #### 执行推断 设置好输入后,调用解释器完成一次正向传播计算: ```python input_details = interpreter.get_input_details()[0] output_details = interpreter.get_output_details()[0] # 将预处理过的图像放入指定位置 interpreter.set_tensor(input_details['index'], input_data) # 启动推理流程 interpreter.invoke() # 获取输出特征图 predictions = interpreter.get_tensor(output_details['index']) predicted_class_id = np.argmax(predictions[0]) print(f'Predicted class ID: {predicted_class_id}') ``` 这段脚本展示了如何将之前准备好的输入传递给解释器对象,触发内部运算逻辑,最终取得类别得分最高的索引编号。 #### 结果解读 根据得到的最大概率对应的标签ID,在预先定义好的映射表中查找具体名称即可获得识别结果。如果采用的是ImageNet 数据集上的预训练权重,则可以直接对照 Imagenet Label Map 来确定物体种类。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BILLY sean

你的奖励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值