add_module的功能为Module添加一个子module,对应名字为name。使用方式如下:
add_module(name, module)
其中name为子模块的名字,使用这个名字可以访问特定的子module,module为我们自定义的子module。
一般情况下子module都是在A.init(self)中定义的,比如A中一个卷积子模块self.conv1 = torch.nn.Conv2d(…)。此时,这个卷积模块在A的名字其实是’conv1’。
对比之下,add_module()函数就可以在A.init(self)以外定义A的子模块。如定义同样的卷积子模块,可以通过A.add_module(‘conv1’, torch.nn.Conv2d(…))。
直接看代码会更直观,举例如下:
普通add_module举例
from torch import nn
from torchsummary import summary
class Net1(nn.Module):
def __init__(self):
super(Net1,self).__init__()
self.conv_1 = nn.Conv2d(3,6,3)
self.add_module('conv_2', nn.Conv2d(6,12,3))
self.conv_3 = nn.Conv2d(12,24,3)
def forward(self,x):
x = self.conv_1(x)
x = self.conv_2(x) # 使用name访问
x = self.conv_3(x)
return x
model = Net1()
print(model)
model.to('cuda')
summary(model,(3,128,128))
输出:
Net1(
(conv_dd): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
(conv_2): Conv2d(6, 12, kernel_size=(3, 3), stride=(1, 1))
(conv_3): Conv2d(12, 24, kernel_size=(3, 3), stride=(1, 1))
)
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 6, 126, 126] 168
Conv2d-2 [-1, 12, 124, 124] 660
Conv2d-3 [-1, 24, 122, 122] 2,616
================================================================
Total params: 3,444
Trainable params: 3,444
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.19
Forward/backward pass size (MB): 4.86
Params size (MB): 0.01
Estimated Total Size (MB): 5.06
----------------------------------------------------------------