- 博客(258)
- 收藏
- 关注
原创 【踩坑记录】vscode远程服务器免密登陆设置
免密登录生成本地公钥:->一路回车查看和复制本地公钥:你的公钥登录到上海服务器,把你本地生成的添加到远程服务器的 ~/.ssh/authorized_keys 文件中。这样你以后从本地用这个密钥连接服务器时,服务器就会识别你,不再要求输入密码。echo “你的公钥" >> ~/.ssh/authorized_keys没有权限->使用tee 绕过 >> 权限问题echo "你的公钥" | sudo tee -a ~/.ssh/authorized_keys > /dev/null。
2025-08-17 01:33:17
816
原创 linux ps指令
它不包括进程处于等待、休眠或挂起状态的时间,只统计它真正消耗 CPU 的时间。输出),说明这些进程可能是刚启动不久但正在密集计算。都很短,但 CPU 占用却很高(比如你之前的。这个 Python 进程已经在 CPU 上。如果它是一个长时间挂起或等待的进程,它的。如果你看到很多 Python 进程。可能很低,即使它已经存在很久。
2025-08-17 01:28:18
273
原创 linux top指令
这一列非常重要,可以帮助分析哪个进程消耗了最多的CPU资源。: 累计 CPU 时间,以“分:秒.百分秒”显示,从进程启动以来所消耗的总 CPU 时间。的输出,它提供了有关运行中的进程的详细信息!: 状态字段,代表进程的状态,如 R(运行)、S(休眠)等。: 进程 ID,操作系统分配给每个运行进程的唯一标识符。这是TOP指令出来的,TIME+这里的含义是什么。: 此进程当前消耗的 CPU 百分比。: 优先级,表示进程的优先级数值。: 此进程当前消耗的内存百分比。: 运行此进程的用户名称。
2025-08-16 13:29:04
294
原创 软链接 (Symbolic Link)
软链接(Symbolic Link),在类 Unix 系统中通常被称为符号链接,允许为文件或目录创建一个指向另一个文件或目录的引用。软链接非常有用,特别是需要在不同位置引用同一个文件或目录,或者当你需要重命名或移动文件系统的一部分而不影响指向它们的链接时。如果需要更新软链接以指向另一个不同的目标,可以删除现有的软链接并重新创建一个新的软链接。创建软链接时,需要对目标文件或目录有读取权限,并且对创建软链接的位置有写入权限。-s 参数表示创建软链接(符号链接)。第二个参数是你想要创建的软链接的名称。
2025-08-10 20:49:13
140
原创 特征线性调制层 Feature-wise Linear Modulation (FiLM)
根据条件特征获取缩放scale参数和移位参数shift,即计算γ和β参数。# 对输入特征x进行缩放和偏移,实现条件特征调整输入特征。condition_dim = 128 # 条件特征。# 初始化输入特征x和条件特征condition。input_dim = 64 # 输入特征。# 使用FiLM层对输入特征x进行条件调整。# 全连接层,用于生成γ和β参数。# 创建一个FiLM层实例。
2025-07-29 21:55:33
269
原创 BEV感知实时构建路口拓扑 觉非科技基于MapTR的优化与实践
觉非科技基于MapTR方法,通过车路协同数据积累对实时矢量建图技术进行优化:1)改进车道信息表达,增加中心线、方向及宽度属性输出;2)引入地图先验信息提升复杂路口的拓扑识别准确率;3)优化道路拓扑表达,实现自动车道挂接。这些改进使建图结果更符合自动驾驶规控需求,在nuScenes数据集上展现出优越性能。该技术通过多任务联合训练持续迭代,为自动驾驶感知系统提供更安全可靠的实时环境理解能力。
2025-07-22 23:01:05
664
原创 BEV 在线实时局部地图构建的三个经典方案对比和思考(HDMapNet,VectorMapNet,MapTR)
本文对比分析了三种基于BEV范式的在线局部高精地图生成方案:HDMapNet(2022)采用语义分割思路,通过三个分支分别处理语义、实例嵌入和方向,需复杂后处理;VectorMapNet(2022)创新性地将地图要素抽象为关键点,结合DETR框架实现端到端检测,但依赖序列生成导致效率受限;MapTR(2023)在VectorMapNet基础上改进,直接预测固定长度点集并引入顺序无关机制,在精度(mAP提升15%)和效率(达25FPS)上显著提升,成为当前最优解决方案。三种方案体现了从分割到检测、从非端到端到
2025-07-22 22:43:00
674
原创 pdb.set_trace()
的 Python 内置调试模块可以轻松设置断点并调试代码!一旦代码运行到这里,它会暂停并进入交互调试模式。的位置,你可以开始调试变量和逻辑了!:继续运行直到下一个断点。运行代码后,程序会暂停在。
2025-07-20 17:45:58
179
原创 nohup指令
用服务器做pytorch训练时,直接跑python命令如果连接不小心断了,训练也就断了。可以在bash中使用nohup配合&来解决该问题。2表示错误,1表示标准输出,2>&1表示把标准错误定向到标准输出上,一起输出。按下Ctrl+C或者关闭终端,程序都仍然运行,需要通过kill来终止进程。训练中的标准输出将放入out.log中。按下Ctrl+C,程序依然运行。按下Ctrl+C,程序结束。nohup 指定输出文件。关闭终端,程序依然运行。
2025-07-20 17:40:51
225
原创 python 字典中取值
解读 xxx = np.float32( data_loaded["intrinsics"]["fisheye_parameters"].get( "xxx", 1.0))总结:这段代码的主要目的是以安全方式从字典中获取参数值,并确保值的类型是。中提取一个键值,并将其转换为单精度浮点数。它处理了键可能不存在的情况,非常实用!格式的值,用于后续计算或处理。这段代码的作用是从字典结构。这是访问嵌套字典的部分,从。)强制转换为单精度浮点类型。键不存在,则返回默认值。将获得的值(无论是实际的。
2025-07-20 17:36:00
170
原创 bash方式启动模型训练
export \nohup \mtn.py \--train \AI解读:这段指令的目标是设置环境变量并运行一个 Python 脚本来启动训练任务,同时将日志输出分别记录到文件。
2025-07-19 18:30:28
610
原创 MapDR 在线矢量建图+交通规则理解
遵守交通规则行驶是实现自动驾驶系统的必要条件,车道级交通规则通常包含在高精地图中,为自动驾驶系统提供了准确、可靠的规则指导。而目前的在线建图方法主要关注于车道线、道路拓扑等道路结构的感知,忽视了对于包含更多语义信息的交通规则的理解,这一局限使自动驾驶系统仍然需要依赖离线地图获取交通规则,限制了自动驾驶系统的“在线化”趋势。由人类驾驶过程的启发,从交通标志中理解交通规则需要完成两个任务,首先理解交通标志牌中指示的车道级交通规则内容,同时要明确规则作用于具体哪一条车道(关联到具体的车道中心线)。
2025-07-12 02:30:33
44
原创 docker exec it xxx bask
it :目前的理解浅薄,就是要等在容器内的命令执行完毕才会出来到当前操作;没有-it的加就相当于在容器内执行一下命令,不等容器内部是否执行完毕直接出来,而我们看见的他在上面是因为容器内的执行快,(行动派可以试试在里面写个循环制造时间验证)dockerexec -it CONTAINER_ID bash进入容器终端并且的保留为容器终端的输入形式(-it和bash的结合作用)dockerexec -it CONTAINER_ID bash进入容器终端并且的保留为容器终端的输入形式.那么就出来了 -it …
2025-07-09 09:04:31
335
原创 MapTRV2解读
MapTRV2在V1基础上进行了优化升级,主要改进包括:1)解耦self-attention降低计算复杂度;2)发现BEV特征更适合地图重建任务;3)针对nuScenes等缺少高度信息的场景优化处理;4)补充了中心线建模,并引入训练技巧加速收敛。虽然计算效率提升,但推理速度未明显改善。该版本通过架构优化和训练策略调整,实现了性能提升,是MapTR的增强版。
2025-07-06 07:54:06
48
原创 MapTR解读
MapTR技术摘要(150字) MapTR提出了一种创新的高精地图建模方法,通过置换等价建模解决点集顺序问题。核心创新包括:1) 将地图元素建模为具有等价置换的点集,统一处理顺时针/逆时针方向问题;2) 设计层次化查询嵌入结构(实例队列+点队列),采用双层注意力机制获取BEV特征;3) 引入层次化双边匹配策略(实例级+点级匹配)和方向损失约束形状。训练使用多任务损失(类别、曼哈顿距离、方向)和匈牙利算法匹配。该方法通过BEVFormer架构实现,支持端到端训练,有效解决了地图元素建模中的点序敏感性难题,为自
2025-07-06 07:48:11
44
原创 NuSences 数据集解析以及 nuScenes devkit 的使用 -- 代码
本文介绍了如何使用NuScenes数据集进行自动驾驶研究。内容主要包括:1)初始化NuScenes数据库并查看场景和样本元数据;2)探索传感器数据、样本注释、实例和类别等数据结构;3)演示数据可视化方法,包括点云渲染、样本渲染和场景视频生成;4)讲解如何通过反向索引和快捷方式高效查询数据。该数据集包含1000个20秒的场景,每半秒标注一次,涵盖激光雷达、雷达和相机等多种传感器数据,为自动驾驶算法开发提供了丰富的多模态标注信息。
2025-07-03 20:20:25
71
原创 NuSences 数据集解析以及 nuScenes devkit 的使用 -- 使用教程
本文介绍了NuScenes自动驾驶数据集的使用教程,主要包括:1)数据集下载与结构解析,包含地图、关键帧、过渡帧和元数据文件;2)NuScenes devkit的安装与初始化方法;3)数据结构的详细说明,包括场景、样本、传感器数据、标注、实例、类别等核心概念;4)数据可视化方法,如点云渲染、视频生成和地图显示。教程还提供了反向索引和快捷方式的使用技巧,帮助用户高效查询数据。该数据集包含多模态传感器数据(6相机、1激光雷达、5毫米波雷达)和丰富的标注信息,适用于自动驾驶算法开发。
2025-07-03 20:17:31
51
原创 NuSences 数据集解析以及 nuScenes devkit 的使用 -- 官网介绍
nuScenes是由Motional团队开发的大规模自动驾驶数据集,包含波士顿和新加坡的1000个20秒驾驶场景,涵盖复杂交通状况。数据集提供多传感器数据(6摄像头、1激光雷达、5雷达、GPS/IMU)及23类物体的3D标注,含1.4M图像、390k激光雷达扫描和1.4M物体框。相比KITTI,nuScenes标注量多7倍,并首次提供完整传感器套件数据。2020年新增激光雷达点云语义分割标注(32类标签)。数据通过精确校准和同步采集,支持检测、跟踪等任务,旨在推动自动驾驶算法在复杂城市场景中的发展。
2025-07-03 19:50:20
49
原创 使用案例 - 根据nuscenes-devkit工具读取nuscnes数据集
本文介绍了NuScenes数据集处理流程:1)安装nuscenes-devkit工具包;2)根据数据集版本和用途获取场景划分;3)创建NuScenes类采样数据并调整文件路径格式;4)构建SegData类继承NuscData,实现数据加载接口;5)创建数据集和DataLoader。关键步骤包括场景划分、数据采样、格式调整和加载器构建,为后续模型训练提供数据支持。
2025-07-02 20:22:13
73
原创 智能驾驶感知算法任务简介
典型输出维度为 [B, C, X, Y, Z],其中 B 为 batch size,C 为类别数或 occupancy 状态数,X、Y、Z 表示 3D 空间上的 voxel 网格。多类别建图:支持同时预测多类地图元素,如 divider(车道之间的分隔线)、boundary(道路边界)、arrow(导向箭头)、stopline(停止线) 等。, pn],每个点为 (x, y) 或 (x, y, attr)(带语义)。与传统的栅格输出不同,MapTR 直接输出点序列形式的几何结构,精度更高。
2025-07-01 13:22:37
35
原创 Deepseek -> 如何在PyTorch中合并张量
首先,torch.cat是在已有的维度上拼接,比如两个形状是(2,3)的张量,用cat在dim=0的话,就会变成(4,3),而dim=1的话就是(2,6)。而torch.stack则会新建一个维度,比如两个(3,4)的张量,用stack在dim=0的话,结果变成(2,3,4)。比如A是(2,3),B是(2,3),cat之后在dim=0变成(4,3),dim=1变成(2,6)。而stack的话,结果会是(2,2,3)或者(2,3,2),取决于dim参数。比如用cat的时候,除了拼接的维度,其他维度必须相同。
2025-03-12 21:29:15
603
原创 Deepseek -> 如何写 Dockerfile
同时要提醒常见的注意事项,比如每条指令生成一层,优化层数,使用.dockerignore忽略不必要的文件。用户可能的需求是部署自己的应用,或者搭建环境,所以实际示例应该贴近常见场景,比如Python应用。但根据问题,用户主要问的是制作Dockerfile,所以重点在步骤和示例,其他优化可以稍微提及。这部分可能用户容易混淆,得解释CMD是默认命令,可以被覆盖,而ENTRYPOINT是入口点,通常一起使用。总之,分步骤讲解,每个指令的作用,给出示例,注意事项,最后验证方法。1. **指定基础镜像**
2025-03-12 12:44:31
578
原创 Dockerfile -> Docker image -> Docker container
Dockerfile->Dockerimage->Dockercontainer
2025-01-19 23:06:34
344
原创 docker打包镜像并迁移:如何从A服务器打包docker镜像到B服务器上容器中运行
docker打包镜像并迁移:如何从A服务器打包docker镜像到B服务器上容器中运行
2024-12-20 03:15:37
1653
原创 MMCV之Runner介绍
mmcv/runner/base_runner.py文件中,定义了runner类。该类用于管理一个模型的训练和评估过程。这里放张官方示意图(runner简单来说就是实现了右边是个红色框的类):本文介绍了mmcv中runner介绍,基本所有mmdet模型都用到上述两个runner。
2024-10-22 00:35:22
814
1
原创 Python 字典(Dictionary) items(),pop(‘key‘)方法
字典(Dictionary) items(),pop('key')方法
2024-10-08 12:45:10
368
【YOLOV8 轻量化改进】 使用高效网络EfficientNetV2替换backbone
2024-07-23
OpenLane车道线数据集百度网盘链接(永久有效)
2024-03-27
DeepLabV3+模型剪枝实战
2024-03-05
基于YOLOv5和DeepSort算法实现的目标追踪(源码+模型+权重+测试视频)(一键运行)
2024-03-03
猫狗数据集的二分类图像识别项目:基于VIT(vision transformer)
2024-02-08
MobaXterm免安装版,可以直接运行使用
2024-09-11
YOLOV8多任务(车道线检测+目标检测+可行驶区域)模型项目源码(带数据,可一键运行)
2024-07-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人