(一)保存和加载整个模型
包含模型的结构、权重、训练配置项(损失函数、优化器)、优化器状态,允许准确地从上次结束的地方开始训练。
1.训练完模型后
path='.../.../xxx.h5'
model.save(path)
2.调用模型
#1 调用模型
import keras
from keras.models import load_model
path='.../.../xxx.h5'
my_model=load_model(path)
#2 引入并处理数据(因数据而异)
#3 可以直接开始evaluate/predict/继续训练
(二)只保存、加载模型结构
保存模型的结构,而非其权重或训练配置项(未经compile)。
1.训练完模型后
my_model_json=model.to_