难度等级:简单
上一篇算法:
力扣此题地址:
1.题目: 青蛙跳台阶问题
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n
级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
2.解题思路:
这题和 剑指 Offer 10- I. 斐波那契数列 思路一样,参考剑指 Offer 10- I. 斐波那契数列【递归循环】
https://blog.csdn.net/m0_51697147/article/details/127406288
在一般情况下,可以把n级台阶的跳法看成n的函数,记为f(n),那么一般情况下,一开始我们有两种不同的选择:(1)第一步只跳一级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即f(n-1);(2)第一步跳两级,那么跳法数目等于后面剩下的n-2级台阶的跳法数目,即f(n-2)。所以f(n)=f(n-1)+f(n-2)。
3.代码实现:
class Solution {
public int numWays(int n) {
if(n <= 0){
return 1;
}
int a = 0, b = 1, sum=0;
for(int i = 0; i < n; i++){
sum = (a + b) % 1000000007;
a = b;
b = sum;
}
return sum;
}
}
4.知识点补充:
为什么res要模1000000007?
因为这个数字是10位的最小质数,上面的代码并没有问题,只是数字太大会造成溢出,需要将计算结果 % 1000000007才能保证得出的结果在int 范围中;