1.求32+62+122+242+42+82+162+322
2225
2025
1725
2125
解析:
由勾股定理知 3^2+ 4^2= 5^2 , 6^2 + 8^2 =102,122+ 162=202 242+322 = 40^2
所以:
32+62+122+242+42+82+162+322 =>52+102+202+402=>25+100+400+1600=2125
2.4 ,5 ,( ) ,40 ,104
7
9
11
13
解析:5-4=1=1³ 104-40=64=4³ 猜测,后一个减前一个,等于序号的三次方 验证,13-5=8=2³ 40-13=27=3³
教授选出两个从2到5的数字(假设第一个数字比第二个大),分别把它们的和告诉学生A,把它们的差告诉学生B。结果学生A和B都无法正确推导出数字是多少。又假设学生A和B的结论是正确的,则这两个数字是:
4和3
5和2
4和2
3和2
解析:把所有组合都列出来,发现3和4的和7不唯一,4和3的差1也不唯一,因此这两个数是无法确定的,故选择A
12,25,39,( ),67,81,96
61
54
48
58
解析:依次增加13 14 15 13 14 15
5.3/7 ,5/8 ,5/9 ,8/11 ,7/11 ,()
11/14
10/13
15/17
11/12
解析:奇数项:
3/7 5/9 7/11 分子以2递增 分母同理
偶数项
5/8 8/11 11/14 分子以3递增 分母同理
A、B两人玩猜字游戏,游戏规则如下:
A选定一个 [1,100]之间的数字背对B写在纸上,然后让B开始猜;如果B猜的偏小,A会提示B这次猜的偏小;一旦B某次猜的偏大,A就不再提示,此次之后B猜的偏小A也不会再提示,只回答猜对与否。请问:B至少要猜()次才能保证猜对?
12
13
14
15
解析:C。14,27,39,50,60,69,77,84,90,95,99,102,104,105
最多能区分105个数字。