内容归纳:前缀和&差分
二维前缀
通过容斥原理可以将一维数组前缀和进行扩展到二维甚至更高的维度;
二维数组前缀和可以通过一种计算面积的方式来理解(同理三维数组前缀和通过体积)
- 在预处理之后使用容斥原理得到面积差值把多减去的加回来就是当前所求区间的二位数组前缀和
题目:
领地选择
思路:
- 二维数组前缀和
- 初始化原数组
- 使用前缀和数组记录以当前节点为右下角的时候当前覆盖面积范围内所有元素的和
- 使用容斥原理,计算出选定区域覆盖的部分,通过计算在很短的时间内就可以得出覆盖面积的和,记录最大值的右下角坐标
- 根据记录的最大值右下角坐标,找到左上角坐标,返回该坐标
#include <bits/stdc++.h>
#include <vector>
using namespace std;
using ll = long long;
static constexpr ll MAX = 1e9 + 7;
int main()
{
ios::sync_with_stdio(0), cout.tie(0), cin.tie(0);
int n, m, c; cin >> n >> m >> c;
vector<vector<int>> arr(n + 1, vector<int>(m + 1, 0));
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
cin >> arr[i][j];
vector<vector<int>> prefix(n + 1, vector<int>(m + 1, 0));
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
prefix[i][j] = arr[i][j] + prefix[i][j - 1] + \
prefix[i - 1][j] - prefix[i - 1][j - 1];
int max_val = INT_MIN;
pair<int, int> p = {0, 0};
for (int i = c; i <= n; ++i)
for (int j = c; j <= m; ++j)
if(max_val < prefix[i][j] - prefix[i][j - c] - \
prefix[i - c][j] + prefix[i - c][j - c])
{
p = {i - c + 1, j - c + 1};
max_val = prefix[i][j] - prefix[i][j - c] - \
prefix[i - c][j] + prefix[i - c][j - c];
}
cout << p.first << ' ' << p.second;
return 0;
}
最大加权矩形
思路1:枚举+二维前缀和+控制左上和右下范围(数据范围小可以使用,题中数据范围可以参考 a ∈ [-127, 127],n ∈ [0, 120])
- 数据输入初始化
- 构造[i, j] 为右下角的前缀和数组,
- 通过容斥定理筛选矩形,但是(动态的矩形,开头结尾不确定,所以枚举开头和结尾)
#include <bits/stdc++.h>
#include <vector>
using namespace std;
using ll = long long;
static constexpr ll MAX = 1e9 + 7;
int main()
{
ios::sync_with_stdio(0), cout.tie(0), cin.tie(0);
int n; cin >> n ;
vector<vector<int>> arr(n + 1, vector<int>(n + 1, 0));
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
cin >> arr[i][j];
vector<vector<int>> prefix(n + 1, vector<int>(n + 1, 0));
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
prefix[i][j] = arr[i][j] + prefix[i][j - 1] + \
prefix[i - 1][j] - prefix[i - 1][j - 1];
int max_val = INT_MIN;
for (int x1 = 1; x1 <= n; x1++)
{
for (int y1 = 1; y1 <= n; y1++)
{
for (int x2 = x1; x2 <= n; x2++)
{
for (int y2 = y1; y2 <= n; y2++)
{
max_val = max(max_val, prefix[x2][y2] - \
prefix[x2][y1 - 1] - prefix[x1 - 1][y2] + \
prefix[x1 - 1][y1 - 1]);
}
}
}
}
return 0;
}
参考
blbl 5:12开始一小段
洛谷【领地选择】:https://www.luogu.com.cn/problem/P2004
洛谷【最大加权矩形】:https://www.luogu.com.cn/problem/P1719