Rinne Loves Edges

本文介绍了一道关于维护无向连通图并删除边以限制特定节点可达性的题目,通过树形DP求解最小代价。关键在于理解如何使用f[u]表示以u为根的最小代价,并利用dfs遍历和转移方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:https://ac.nowcoder.com/acm/problem/22598
来源:牛客网

Rinne 最近了解了如何快速维护可支持插入边删除边的图,并且高效的回答一下奇妙的询问。
她现在拿到了一个 n 个节点 m 条边的无向连通图,每条边有一个边权 w_i

现在她想玩一个游戏:选取一个 “重要点” S,然后选择性删除一些边,使得原图中所有除 S 之外度为 1 的点都不能到达 S。
定义删除一条边的代价为这条边的边权,现在 Rinne 想知道完成这个游戏的最小的代价,这样她就能轻松到达 rk1 了!作为回报,她会让你的排名上升一定的数量。

一道比较水的树形DP,但是是很多题延申的基础
定义f[N]表示以u为根的最小代价,转移方程为:f[u]+=min(f[son],edge)
用深搜搜一遍,dfs返回值为所有叶子节点边权之和,注意一些细节即可
前向星存图是真的方便hh
#include<bits/stdc++.h>
using namespace std;
#define N 100010
#define int long long

int n,m,s;
int h[N],e[2*N],ne[2*N],w[2*N],idx=0;
int d[N],f[N];  //f[u]表示以u为根的最小的代价

void add(int a,int b,int c){
    e[idx]=b,w[idx]=c;
    ne[idx]=h[a],h[a]=idx++;
}

int dfs(int u,int pre){
    int res=0,sum=0;
    f[u]=0;
    for(int i=h[u];~i;i=ne[i]){
        int j=e[i];
        if(j==pre) continue;
        if(d[j]==1) sum+=w[i];
        else sum+=dfs(j,u);
        
        f[u]+=min(f[j],w[i]);
    }
    return sum;
}

signed main(){
    memset(h,-1,sizeof h);
    memset(f,100,sizeof f);
    
    scanf("%lld%lld%lld",&n,&m,&s);
    for(int i=1;i<=m;i++){
        int a,b,c;
        scanf("%lld%lld%lld",&a,&b,&c);
        add(a,b,c),add(b,a,c);
        d[a]++,d[b]++;
    }
    
    dfs(s,-1);
    
    cout << f[s] << endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值