链接:https://ac.nowcoder.com/acm/problem/22598
来源:牛客网
Rinne 最近了解了如何快速维护可支持插入边删除边的图,并且高效的回答一下奇妙的询问。
她现在拿到了一个 n 个节点 m 条边的无向连通图,每条边有一个边权 w_i
现在她想玩一个游戏:选取一个 “重要点” S,然后选择性删除一些边,使得原图中所有除 S 之外度为 1 的点都不能到达 S。
定义删除一条边的代价为这条边的边权,现在 Rinne 想知道完成这个游戏的最小的代价,这样她就能轻松到达 rk1 了!作为回报,她会让你的排名上升一定的数量。
一道比较水的树形DP,但是是很多题延申的基础
定义f[N]表示以u为根的最小代价,转移方程为:f[u]+=min(f[son],edge)
用深搜搜一遍,dfs返回值为所有叶子节点边权之和,注意一些细节即可
前向星存图是真的方便hh
#include<bits/stdc++.h>
using namespace std;
#define N 100010
#define int long long
int n,m,s;
int h[N],e[2*N],ne[2*N],w[2*N],idx=0;
int d[N],f[N]; //f[u]表示以u为根的最小的代价
void add(int a,int b,int c){
e[idx]=b,w[idx]=c;
ne[idx]=h[a],h[a]=idx++;
}
int dfs(int u,int pre){
int res=0,sum=0;
f[u]=0;
for(int i=h[u];~i;i=ne[i]){
int j=e[i];
if(j==pre) continue;
if(d[j]==1) sum+=w[i];
else sum+=dfs(j,u);
f[u]+=min(f[j],w[i]);
}
return sum;
}
signed main(){
memset(h,-1,sizeof h);
memset(f,100,sizeof f);
scanf("%lld%lld%lld",&n,&m,&s);
for(int i=1;i<=m;i++){
int a,b,c;
scanf("%lld%lld%lld",&a,&b,&c);
add(a,b,c),add(b,a,c);
d[a]++,d[b]++;
}
dfs(s,-1);
cout << f[s] << endl;
return 0;
}