- 博客(212)
- 收藏
- 关注
原创 conda创建虚拟环境将虚拟环境加入到jupyter kernel中
将虚拟环境添加到jupyter kernel中。在虚拟环境安装ipykernel。
2025-09-13 13:59:12
50
原创 llm的一点学习笔记
误解1:通过提高准确性可以消除幻觉,因为一个 100%准确的模型永远不会产生幻觉。发现:准确性永远无法达到100%,因为无论模型规模如何,搜索和推理能力怎样,一些现实世界的问题本质上是无法回答的。误解2:幻觉是不可避免的。发现:幻觉并非不可避免,因为语言模型在不确定时可以选择不作答。误解3:避免幻觉需要一定程度的智能,而这种智能只有通过更大的模型才能实现。发现:小型模型可能更容易了解到自身的局限性。
2025-09-08 18:58:49
608
原创 【Datawhale大模型入门实训课】TASK04模型微调
目前我们所使用的 LLM 一般经过了预训练、有监督微调、人类反馈强化学习三个步骤的训练。预训练是 LLM 强大能力的根本来源,事实上,LLM 所覆盖的海量知识基本都是源于预训练语料。但是,预训练赋予了 LLM 能力,却还需要第二步将其激发出来。经过预训练的 LLM 好像一个博览群书但又不求甚解的书生,对什么样的偏怪问题,都可以流畅地接出下文,但他偏偏又不知道问题本身的含义,只会“死板背书”。因此,我们还需要第二步来教这个博览群书的学生如何去使用它的知识。
2025-09-01 16:24:02
693
原创 【datawhale组队学习】n8n - TASK04 n8n高阶:社区节点开发(第五章)
如果官方或者社区节点都没有你需要的节点,或者对于企业内部的服务需要与 n8n 集成,你可以自己开发一个节点。n8n 官方提供了详细的文档和工具帮助开发者开发节点。以下我们以高德地图的天气服务为例,开发一个 天气服务节点。
2025-09-01 01:07:26
616
原创 【datawhale组队学习】RAG技术 -TASK06索引优化
教程地址:https://github.com/datawhalechina/all-in-rag基于LlamaIndex的高性能生产级RAG构建方案1,对索引优化进行更深入的探讨。
2025-08-29 01:25:55
901
原创 【Datawhale大模型入门实训课】TASK03
问题:某城市发生了一起汽车撞人逃跑事件,该城市只有两种颜色的车,蓝15%绿85%,事发时有一个人在现场看见了,他指证是蓝车,但是根据专家在现场分析,当时那种条件能看正确的可能性是80%那么,肇事的车是蓝车的概率到底是多少?“transformer 是一种用于序列到序列的深度学习模型,相较于传统的 rnn 和 lstm ,它引入了注意力机制,能够更好的关注到序列数据中的语义信息,同时解决了长距离依赖问题,并且能够并行处理。即使是简单的一句提示词,大模型也能给出靠谱的解题过程和正确的答案,简直太强啦!
2025-08-28 19:00:17
567
原创 【Datawhale组队学习】handy Multi Agent - TASK04
教程地址:https://datawhalechina.github.io/handy-multi-agent。
2025-08-28 01:39:18
603
原创 【datawhale组队学习】n8n - TASK03 n8n高阶:子工作流以及AIAgent(第四章)
教程地址:https://github.com/datawhalechina/handy-n8n/tree/main/c04。
2025-08-28 01:09:38
658
原创 【datawhale组队学习】RAG技术 -TASK05 向量数据库实践(第三章3、4节)
首先导入所有必需的库,定义好模型路径、数据目录等常量。为了代码的整洁和复用,将 Visualized-BGE 模型的加载和编码逻辑封装在一个 Encoder 类中,并定义了一个 visualize_results 函数用于后续的结果可视化。# 导入所需的系统操作、进度显示、文件查找、深度学习及向量数据库相关库import os # 用于文件路径、目录操作等系统级功能from tqdm import tqdm # 用于显示循环、任务执行的进度条。
2025-08-28 00:06:46
1083
原创 【Datawhale组队学习】handy Multi Agent - TASK03 CAMEL框架中的多智能体系统(课程第三章3.1节)
定义:多智能体(Multiple Agent)由多个相互作用的智能体组成,每个智能体都有自己的目标和策略。这些智能体可以相互通信、协作或竞争,以实现更复杂的行为和决策。应用:多智能体系统广泛应用于复杂的任务中,如交通管理、分布式机器人系统、经济市场模拟、多玩家游戏等。特点:协作:智能体之间可以协作,共同解决问题。竞争:智能体之间也可以存在竞争关系,如在拍卖或游戏场景中。自主性:每个智能体都有自己的决策过程,保持一定程度的自主性。复杂性。
2025-08-25 00:00:23
867
原创 【datawhale组队学习】RAG技术 - TASK04 向量及多模态嵌入(第三章1、2节)
向量嵌入(Embedding)是一种将真实世界中复杂、高维的数据对象(如文本、图像、音频、视频等)转换为数学上易于处理的、低维、稠密的连续数值向量的技术。想象一下,我们将每一个词、每一段话、每一张图片都放在一个巨大的多维空间里,并给它一个独一无二的坐标。这个坐标就是一个向量,它“嵌入”了原始数据的所有关键信息。这个过程,就是 Embedding。数据对象:任何信息,如文本“你好世界”,或一张猫的图片。Embedding 模型:一个深度学习模型,负责接收数据对象并进行转换。
2025-08-24 23:14:30
614
原创 【Datawhale大模型入门实训课】TASK01+2
大模型(Large Language Model, LLM)参数规模大: 模型的参数量巨大,通常从 70亿(7B) 级别起步,到现在已经有千亿、万亿 (DeepSeek-R1:671B,GPT-4:约1.8T) 级别的模型。你可以把参数想象成模型大脑中的神经元连接点,连接点越多,模型就越“聪明”,能记住和学习的知识就越多。训练数据量大: 大模型通常使用了海量的文本数据进行训练,这些数据可能包含了互联网上大部分高质量的公开文本。token 是指模型能够识别的最小单位,比如一个单词、一个标点符号等。
2025-08-24 00:18:42
790
原创 【datawhale组队学习】handy Multi Agent - TASK02
示例:定义数学工具首先,定义您的函数并使用FunctionTool。
2025-08-23 00:11:42
612
原创 【datawhale组队学习】RAG技术 - TASK03
教程地址:https://github.com/datawhalechina/all-in-rag。
2025-08-22 00:13:55
701
原创 【datawhale组队学习】n8n - TASK02
两种导入n8n系统的方式点击示例工作流下面the workflow’s code以展示工作流代码,点击 Copy 复制代码。拷贝工作流下方的链接,点击 n8n 系统右上方菜单点击Import from URLimport from File, 从系统右上三点downlowd文件,之后import from file 导入文件界面下方日志区域看到执行过程的输入 输出。通过右上角导航栏中的 Inactive 按钮来启动工作流。
2025-08-21 02:02:03
1090
原创 Docker学习笔记01
教程来自于bilibili:https://www.bilibili.com/video/BV1eSb8zaEAf。
2025-08-20 01:00:23
585
原创 【datawhale组队学习】camel-ai TASK01课程第一章
response.msgs是BaseMessage(role_name=‘Assistant’, role_type=<RoleType.ASSISTANT: ‘assistant’>, meta_dict={}, content=‘你好,我是来自阿里云的大规模语言模型,我叫通义千问。’, video_bytes=None, image_list=None, image_detail=‘auto’, video_detail=‘auto’, parsed=None)这是一张金毛寻回犬的特写照片。
2025-08-19 00:41:23
733
原创 【datawhale组队学习】n8n TASK01
教程地址:https://github.com/datawhalechina/handy-n8n/
2025-08-18 23:59:08
589
原创 【datawhale组队学习】RAG技术 - TASK01
融合信息检索与文本生成的技术范式。其核心逻辑是:在大型语言模型(LLM)生成文本前,先通过检索机制从外部知识库中动态获取相关信息,并将检索结果融入生成过程,从而提升输出的准确性和时效性在LLM生成文本之前,先从外部知识库中检索相关信息,作为上下文辅助生成更准确的回答。
2025-08-18 19:33:57
925
原创 Mining of Real-world Hypergraphs part1-2 逐字翻译解读
对于任意一个m×nm\times nm×n的实矩阵A\mathbf{A}A,奇异值分解可以将矩阵A\mathbf{A}A分解为三个矩阵的乘积,即AUΣVTAUΣVT。U\mathbf{U}U是一个m×mm\times mm×m的正交矩阵,它的列向量被称为左奇异向量;V\mathbf{V}V是一个n×nn\times nn×n的正交矩阵,它的列向量被称为右奇异向量;Σ\SigmaΣ是一个m×nm\times nm×n。
2025-08-11 20:57:38
914
原创 【Datawhale AI夏令营第三期AIGC 】TASK02
本赛题分为四个子任务,包括:AIGC图片生成、自然场景图片编辑、视觉文本编辑和Deepfake。
2025-08-10 23:43:35
988
原创 graph attention network
即当输入x > 0时,输出x;当x ≤ 0时,输出0。但它有一个缺陷:当输入长期为负数时,ReLU 会输出0,导致对应神经元的梯度为0,权重无法更新,这个神经元会永久「死亡」(不再参与学习),这就是「死亡 ReLU 问题」。
2025-07-31 21:47:16
655
原创 TASK02【Datawhale AI夏令营第二期】模型蒸馏 -思维链知识
resourceid一个标准的prompt能显著提升模型生成回答的质量,一个标准的prompt通常包含任务说明、问题、上下文、输出格式等四个基本元素。
2025-07-27 00:23:16
809
原创 Task04【datawhale组队学习】JoyRL&EasyRL DQN算法
改进方向分类- 网络模型层面:如 Double DQN、Dueling DQN ,优化网络结构与QQQ值预测逻辑。- 经验回放角度:如 PER DQN ,改进样本采样策略,提升数据利用效率。off-policy算法是指在学习策略(用于优化价值函数、更新参数 )和执行策略(与环境交互产生样本 )不同的情况下进行学习的强化学习算法。简单来说,就是用来生成数据的策略和用来优化的策略不是同一个策略。
2025-07-26 02:18:20
843
原创 TASK03【datawhale组队学习】DeepLearning
根据问题理解“创造新数据”(如图像翻转、裁剪),扩充训练集 → 让模型学通用规律,缓解过拟合。
2025-07-24 01:13:22
822
原创 TASK02【datawhale组队学习】视觉感知与手眼协调,计算机视觉在机器人中应用,手眼标定算法实现,深度估计与3D重建
参考教程AI硬件与机器人技术教程:https://github.com/datawhalechina/ai-hardware-robotics视觉感知与手眼协调,计算机视觉在机器人中应用,手眼标定算法实现,深度估计与3D重建单目深度估计 (Monocular Depth Estimation)DPT 的全称是 Dense Prediction Transformer。
2025-07-22 02:39:06
910
1
原创 Task03【datawhale组队学习】JoyRL&EasyRL
教程:https://datawhalechina.github.io/joyrl-book/#/ch6/main随机梯度下降(stochastic gradiant descent,SGD)小批量梯度下降(mini-batch gradiant descent)小批量随机梯度下降(mini-batch stochastic gradiant descent)反向传播算法(Backpropagation Algorithm)
2025-07-22 02:17:26
975
原创 Task02【datawhale组队学习】JoyRL&EasyRL
TDλλλ教程地址:https://datawhalechina.github.io/joyrl-book。
2025-07-20 00:36:28
689
原创 TASK01【datawhale组队学习】地瓜机器人具身智能概述
身体(Body):智能体的物理形态,包括各种传感器(如摄像头、激光雷达、触觉传感器)用于感知,以及执行器(如电机、机械臂、轮子)用于行动。大脑(Brain):即智能算法的核心,负责处理来自传感器的数据,进行思考、决策,并向执行器发出指令。这通常涉及到深度学习、强化学习、大语言模型等前沿AI技术。环境(Environment):智能体所处的物理世界。它是智能体学习和实践的舞台,充满着不确定性、动态变化和复杂的物理规律。
2025-07-17 23:25:45
1131
原创 Task01-2【datawhale组队学习】DeepLearning
损失函数的作用:构建一个函数LbwL(b, w)Lbw,输入是模型的未知参数bbbwww,输出是“当参数取这些值时,预测结果好不好”的量化指标。简单说,就是用损失函数判断“当前模型参数下,预测值和真实值的差距有多大”。实例计算演示先给参数赋值(如b500b = 500b500w1w = 1w1),得到具体预测函数y500x1y500x1;
2025-07-17 00:49:25
585
原创 TASK02【Datawhale AI夏令营学习笔记】大模型技术方向
该压缩包内必须包含一个名为 submit 的文件夹,并且该文件夹内必须包含两个 CSV 文件: submit_videos.csv 和 submit_comments.csv。常用方法包括独热编码、词嵌入 (如Word2Vec、GloVe等静态词向量)以及基于预训练模型的上下文词嵌入(如BERT、GPT等动态词向量)。评论聚类 (次高优先级): 基于前两步的结果,需要考虑聚类的效果评估(轮廓系数)和主题词提炼的质量。情感分析 (高优先级): 这是数据最丰富的部分,也是后面聚类的关键输入。
2025-07-13 23:54:16
807
原创 Task01【datawhale组队学习】JoyRL&EasyRL
多智能体强化学习就是在多个智能体的环境下进行强化学习,非静态问题:与单智能体环境不同,在多智能体环境中通常存在非静态问题,即环境的状态不仅由智能体的动作决定,还受到其他智能体的动作的影响。信号问题,即智能体之间可能需要进行通信以合作或竞争,如何高效地通信并从信号中学习是一个难题。信誉分配问题,在多智能体的合作任务中,确定每个智能体对于整体目标的贡献(或责任)是一个挑战。多智能体环境通常也存在复杂的博弈场景,对于此类研究往往引入博弈论来找到环境中的纳什均衡或其他均衡策略,但这是一个复杂的挑战。
2025-07-12 01:11:58
352
原创 【datawhale组队学习】Happyllm-Task08
Casual Language Model,下简称 CLM。Decoder-Only(GPT):像 “作家”,擅长从前往后 “创作” 内容,适合写文章、生成对话等 NLG 任务。Encoder-Only(BERT):像 “读者”,擅长 “理解” 现有文本的含义,适合阅读理解、语义匹配等 NLU 任务。Encoder-Decoder(T5):像 “翻译官”,既能理解输入(Encoder),又能生成输出(Decoder),在 Seq2Seq 任务(如翻译、摘要)中更灵活。
2025-07-02 01:05:00
805
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人