
大模型
文章平均质量分 84
大模型
Mr.小海
全栈领域工程师,专注于企业人工智能 AI 大模型 、 数据可视化 BI 的项目落地,推进企业数字化进程,关注相关技术和发展态势,提供商业化的最佳选择。
技术栈:大模型,BI 可视化,JAVA,Python,移动端,容器化部署(docker ,K8s 等),集群,机器学习/深度学习,Linux 等
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
企业开发转型 | 前端AI化数字化自动化现状
根据Stack Overflow调查显示,76%的受访者正在使用或计划在开发过程中使用AI工具,而2024年麦肯锡AI状况调查进一步指出,72%的组织已在一个或多个领域采用AI技术,这标志着AI工具已从“技术尝鲜”阶段快速演进为开发流程中的核心组件[此外,新兴角色如AI前端开发工程师、工具维护优化工程师需求增长,复合型人才(如医疗+AI前端开发)成为稀缺资源,BOSS直聘数据显示,具备多模态审查能力的AI代码专家年薪已突破100万,法律合规审查经验者岗位奖金上浮50%,反映出市场对高端转型人才的迫切需求[原创 2025-07-21 20:47:21 · 750 阅读 · 0 评论 -
2025年主流AI浏览器功能对比与优劣势分析
本报告的研究范围明确聚焦于2025年市场中活跃的AI浏览器产品,旨在通过系统性分析揭示其功能特性与竞争格局。研究方法上,采用横向功能对比与纵向优劣势分析相结合的方式:横向维度将对不同产品的核心功能模块进行并列比较,纵向维度则深入剖析各产品在技术实现、用户体验等方面的相对优势与不足。为确保分析的客观性与全面性,研究过程中将整合文献中的实测数据(如任务执行效率、用户增长率等量化指标)与技术描述(如本地模型与云端模型的协同机制等技术细节)作为核心支撑,通过多维度证据链构建对2025年主流AI浏览器的综合评估框架。原创 2025-07-21 08:00:00 · 1307 阅读 · 0 评论 -
金融大模型与AI在金融业务中的应用调研报告(2025年)
本报告基于2025年最新行业实践与技术进展,系统梳理了金融大模型的技术演进路径与核心应用场景,结合华为、腾讯、中信建投等头部机构的典型案例,深入分析AI在金融业务中的落地成效与挑战,并提出未来趋势预测。原创 2025-07-20 00:34:21 · 1567 阅读 · 0 评论 -
大模型算法工程师技术路线全解析:从基础到资深的能力跃迁
在医疗健康领域,数据治理的核心在于隐私保护与合规融合,联邦学习技术为跨机构数据协作提供了关键支撑,例如医联MedGPT通过联邦学习技术实现多中心医疗数据合规整合,与华西医院开展的预试验中,其诊疗方案与专家一致性达96%,验证了模型在隐私保护前提下的高精度诊断能力[工具链的深度优化进一步加速了技术普惠,例如飞桨框架3.0作为“AI操作系统”,通过与文心大模型等上层应用的协同优化,支撑千行百业的智能化转型,并依托开放的全国产化技术栈AI智算OpenLab,加速行业解决方案的孵化与落地[原创 2025-07-19 23:44:46 · 910 阅读 · 0 评论 -
AI编程工具对比:Cursor、GitHub Copilot与Claude Code
Claude Code处理复杂算法时像有架构师思维,能规避83%的接口冲突问题” —— 某电商平台技术主管“Cursor的Tab补全有时像魔法,四分之一的情况能完美猜中我的意图” —— 全栈开发者“Copilot免费版足够日常使用,但企业级功能收费偏高” —— 初创公司CTO。原创 2025-07-19 23:17:07 · 2042 阅读 · 0 评论 -
2025年医疗人工智能发展现状
杜克大学研究显示,在医疗服务中披露AI使用后,患者满意度较人类医生单独服务下降0.13分,较未披露AI使用场景下降0.09分,反映知情权与信任度之间的矛盾。美国国防部首席数字和人工智能办公室(CDAO)开展的众包AI红队测试(CAIRT)试点项目,针对军事医学LLM聊天机器人的临床笔记总结和医疗咨询两个用例,组织超200名参与者(含临床提供者与医疗分析师)比较三种LLM,发现超800个潜在漏洞和偏见,为国防部生成式AI政策制定提供关键数据支持,凸显战场医疗数据质量与模型鲁棒性的重要性[原创 2025-07-19 23:09:06 · 1272 阅读 · 0 评论 -
LLM大模型微调技术与最佳实践
本报告综合LLM大模型微调领域的技术演进趋势与实践案例,系统梳理微调基础理论、技术方法、数据工程、训练策略、评估体系、行业应用、伦理安全及工具链等核心内容,构建从技术原理到落地实践的完整分析框架。报告以参数高效微调、数据工程、伦理安全为三大核心板块,其中参数高效微调技术(如LoRA、QLoRA、AdaLoRA等)通过冻结预训练模型大部分参数,仅微调少量适配器参数,显著降低计算资源需求;数据工程聚焦数据质量标准(去重、降噪、领域聚焦)、预处理流程(对话模板构建、多语言数据增强)及隐私保护机制;原创 2025-07-19 23:02:31 · 783 阅读 · 0 评论 -
AI辅助编程时代的高效规范开发指南:工具、原则与提效策略
在AI辅助编程环境中,明确人机角色定位与协作流程是提升开发效率的核心前提。角色划分上,AI的输出应被视为初级开发者提交的拉取请求(PR),其生成的所有内容均需经过人类开发者的严格审核[24具体而言,AI可作为“副驾驶”提供实时代码建议、逻辑检测与优化指导,而人类开发者则作为“监督者”与“策略制定者”,负责需求分析、架构设计、测试用例编写及AI生成代码的最终评审[7][25。原创 2025-07-19 22:59:07 · 1468 阅读 · 0 评论 -
大模型领域主流向量模型相似度算法、架构及指标对比
在大模型快速发展的背景下,经典向量模型通过持续优化仍展现出显著的生命力和不可替代性。这些模型不仅为新兴技术提供了基础框架,其在特定场景下的稳定性、效率及部署轻量化优势,使其在2025年的实际应用中仍占据重要地位。Sentence-BERT(S-BERT)作为BERT的重要变体,针对句子级向量生成进行了专门优化,其核心改进在于引入池化层(如均值池化策略),将Transformer输出的词向量聚合为固定长度的句子向量,有效避免了传统BERT计算句子相似度时需两两比较的效率瓶颈[2][4。原创 2025-07-17 13:26:44 · 1138 阅读 · 0 评论 -
2025年最流行跑分最高的图片理解大模型调研报告
2025年主流闭源商业图片理解大模型呈现多模态融合与性能跃升的特点,国际厂商如OpenAI、Google、Anthropic与国内腾讯、字节跳动等企业主导技术前沿。这些模型凭借全模态支持、长上下文理解及高精度推理能力,在商业场景中占据核心地位。技术优势方面,头部模型各有突破。原创 2025-07-17 10:17:12 · 1071 阅读 · 0 评论 -
2025年07月新潮热门开源项目
2025年新潮热门开源项目呈现多领域协同发展的整体格局,核心技术趋势聚焦于“AI原生”“边缘智能”与“跨平台融合”三大方向。从项目分布来看,AI与机器学习、物联网与嵌入式系统两大领域占比显著,合计超过40%,成为开源生态的主导力量。在技术趋势层面,“AI原生”表现为大语言模型、AI Agent及RAG(检索增强生成)技术的深度应用,相关项目如Composio、Mem0、LanceDB等工具链持续优化智能交互与数据处理能力;“边缘智能”通过KubeEdge、DeepSeek边缘计算工具链等框架实现边缘节点原创 2025-07-16 10:48:58 · 1002 阅读 · 0 评论 -
AI 商业化部署中,ollama 和 vllm 的选型对比
Ollama和vLLM是两种用于本地部署和运行大型语言模型(LLM)的开源工具,各有其特点和适用场景。Ollama以其简便的本地部署和低硬件要求著称,适合新手和低配电脑用户,只需一行命令即可运行模型,适合快速验证和测试。vLLM则专注于高性能推理,采用CUDA加速和连续批处理技术,适合需要高吞吐量和并发处理的生产环境,尤其适合有高端GPU和定制化需求的用户。性能上,vLLM在单请求处理和高并发处理方面表现更优,而Ollama在开发便捷性和快速上手方面更具优势。原创 2025-05-20 23:19:04 · 884 阅读 · 0 评论 -
【2025年5月】数字化中,热门的图片生成模型选型盘点
2025年5月,图片生成模型领域涌现出多个热门选型。Stability AI的Stable Diffusion 3.5系列以其高度可定制性、高效性能和多样化输出脱颖而出,适合各类用户需求。FLUX由前Stable Diffusion团队成员创立,虽未支持商用,但在开源模型中表现强劲。controlnet-union-sdxl-1.0融合多种图像控制功能,适合高分辨率图像生成与编辑。Freepik的F-Lite专注于版权安全与SFW内容,确保合法性。字节跳动的Hyper-SD和SDXL-Lightning则以原创 2025-05-18 09:30:00 · 1392 阅读 · 0 评论 -
文本转语音: XTTS-v2 - 强大且开源的 TTS 模型,已斩获 40k+ star
coqui/XTTS-v2 是一款基于深度学习的低资源零样本文本转语音模型,支持17种语言,能够通过仅6秒的音频剪辑进行语音克隆,并传递情感和风格。该模型通过共同学习技术,从多语言训练数据中转换知识,显著减少所需的训练数据量。相比前一代,XTTS-v2 新增了匈牙利语和韩语支持,改进了扬声器调节架构,提升了稳定性和音频质量。模型支持微调和多语言语音生成,适用于多种应用场景。用户可以通过Python代码或Docker部署模型,具体操作详见官方文档。XTTS-v2 是开源的,用户可以通过提issue来支持更多语原创 2025-05-18 00:49:18 · 788 阅读 · 0 评论 -
语言模型:AM-Thinking-v1 能和大参数语言模型媲美的 32B 单卡推理模型
a-m-team 是北科(Ke.com)的内部团队,专注于探索 AGI 技术,推出了 AM-Thinking-v1 语言模型。该模型基于 Qwen 2.5-32B-Base 构建,通过低成本方式实现了与大参数模型媲美的推理能力。AM-Thinking-v1 在推理基准测试中表现优异,能够与 DeepSeek-R1、Qwen3-235B-A22B 等大型模型竞争,尤其适合资源有限的企业使用。其训练过程包括冷启动 SFT、通过率感知数据管理和两阶段强化学习,最终在数学、代码和开放域聊天任务中展现出强大的推理能力原创 2025-05-18 00:16:03 · 597 阅读 · 0 评论 -
重排序模型解读:gte-multilingual-reranker-base 首个GTE系列重排模型诞生
gte-multilingual-reranker-base 是阿里巴巴团队开发的多语言重排序模型,属于 GTE 模型系列。该模型具有 306M 的参数规模,支持高达 8192 个令牌的输入长度,并涵盖 70 多种语言。其采用仅编码器 transformers 架构,相比基于解码器的模型,推理速度提升了 10 倍,硬件要求更低。在多语言检索任务中,该模型实现了最先进的性能。虽然模型尚处于新兴阶段,但其综合表现良好,适合进一步商业化测试。原创 2025-05-17 23:22:15 · 700 阅读 · 0 评论 -
重排序模型解读 mxbai-rerank-base-v2 强大的重排序模型
强大的重排序模型 mixedbread-ai/mxbai-rerank-large-v2 解读原创 2025-05-17 23:04:39 · 778 阅读 · 0 评论 -
ollama 重命名模型
本文介绍了如何使用 ollama 工具对模型进行重命名操作。首先,通过 ollama list 命令查看当前模型列表。接着,使用 ollama show --modelfile 命令生成原模型 qwen3:32b 的 Modelfile 文件。然后,通过 ollama create 命令从 Modelfile 文件创建新的模型 qwen3。最后,使用 ollama rm 命令删除原模型 qwen3:32b。整个过程通过命令行操作完成,并附有相关截图展示。原创 2025-05-15 17:59:44 · 554 阅读 · 0 评论 -
ollama 升级换源
在拉取千问qwen3模型时,遇到报错提示需要更新Ollama版本。通过检查当前Ollama版本并下载最新版本进行升级,成功解决了该问题。升级过程中,有代理时可直接从官网下载,无代理时可通过修改脚本中的下载链接进行安装。升级完成后,成功拉取了千问qwen3模型。原创 2025-05-15 13:40:05 · 1370 阅读 · 0 评论 -
【干货】向量模型选型比较
在中文RAG平台中,向量模型的选择至关重要。MTEB(Massive Text Embedding Benchmark)是评估文本向量模型的重要基准,而C-MTEB则专门针对中文文本向量进行评估。BGE模型由北京智源人工智能研究院提出,支持多语言,尤其在中文文本处理方面表现优异,资源使用经济。M3E模型专注于中文文本处理,适合资源受限或需要私有化的场景。BCE模型则主要用于提升RAG应用的准确度,具有一定的多语言处理能力。根据具体需求,可以选择适合的模型以实现高效的文本向量化处理。原创 2025-05-09 10:56:13 · 1041 阅读 · 0 评论