1. 引言
随着计算机视觉和深度学习技术的快速发展,手势识别作为人机交互的一种重要方式,逐渐受到关注。手势识别系统可以应用于游戏控制、虚拟现实、智能家居等多个领域。本文将基于YOLOv8构建一个手势识别系统,并通过PyQt5实现UI界面,以实现实时手势识别。我们将详细介绍系统的设计思路、实现过程,并提供完整代码和数据集配置文件。
目录
2. 系统架构
该手势识别系统的整体架构如下图所示:
+---------------------+
| 摄像头输入 |
+---------------------+
|
v
+---------------------+
| YOLOv8模型 |
+---------------------+
|
v
+---------------------+
| 手势识别逻辑 |
+---------------------+
|
v
+---------------------+
| PyQt5 UI界面 |
+---------------------+
- 摄像头输入:通过摄像头捕捉用户手势。
- YOLOv8模型