基于YOLOv8深度学习的常见手势识别系统:UI界面 + YOLOv8 + 数据集全流程详解

1. 引言

随着计算机视觉和深度学习技术的快速发展,手势识别作为人机交互的一种重要方式,逐渐受到关注。手势识别系统可以应用于游戏控制、虚拟现实、智能家居等多个领域。本文将基于YOLOv8构建一个手势识别系统,并通过PyQt5实现UI界面,以实现实时手势识别。我们将详细介绍系统的设计思路、实现过程,并提供完整代码和数据集配置文件。

目录

1. 引言

2. 系统架构

3. 环境搭建

3.1 安装依赖

3.2 创建项目结构

4. 数据集准备

4.1 创建 gestures.yaml

5. 模型训练

6. 手势识别逻辑

7. UI界面实现

8. 测试与优化

8.1 测试结果

8.2 优化方向

9. 总结


2. 系统架构

该手势识别系统的整体架构如下图所示:

 
+---------------------+
|     摄像头输入      |
+---------------------+
          |
          v
+---------------------+
|     YOLOv8模型     |
+---------------------+
          |
          v
+---------------------+
|    手势识别逻辑     |
+---------------------+
          |
          v
+---------------------+
|     PyQt5 UI界面    |
+---------------------+

  • 摄像头输入:通过摄像头捕捉用户手势。
  • YOLOv8模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值