2024年第十届数维杯国际大学生数学建模挑战赛比赛思路和代码会发布到专栏内,不代写论文,不提供论文,只有思路和代码。内容可能一般,请勿盲目订阅。会持续发布到专栏内!!!
python全套教程(一百篇博客):从新手到掌握使用python,可以对数学建模问题进行建模分析。
35套模型算法(优秀论文示例):马尔科夫模型、遗传算法、逻辑回归、逐步回归、蚁群算法、蒙特卡洛模拟、聚类模型、线性规划、粒子群算法、神经网络、相关系数、灰色预测、灰色关联分析、模糊综合评价、模拟退火、时间序列ARMA、方差分析支持向量机、插值、排队论、拟合模型、微分方程、层次分析法、小波分析、多元回归、图论floyd算法、图论Dijkstra模型、因子分析、动态规划、博弈论、决策树、典型相关分析、元胞自动机、主成分分析、TOPSIS法。
目录
因子分析在数据降维和信息提取中有重要应用,特别是在会员画像等场景中。本文将展示如何结合因子分析与RFMT(Recency、Frequency、Monetary、Tenure)模型,构建百货商场会员画像并进行深入分析。
案例背景
百货商场的会员管理中,RFMT 模型常用于对会员进行分层。通过对会员的消费行为数据(包括最近消费时间、消费频率、消费金额、会员年限)进行因子分析,可以提取出更具代表性的综合因子,帮助商场进行精准营销。