1. 引言
随着自动驾驶技术的迅速发展,交通标志识别已经成为智能交通系统中的关键技术之一。交通标志识别的目的是从实时图像或视频中识别出交通标志,并确定其类别(如停车标志、限速标志、禁止通行标志等)。通过准确识别交通标志,智能交通系统能够实时获取交通信息,优化交通流量,保障交通安全。
YOLO(You Only Look Once)系列目标检测模型因其高效的检测性能,特别是在实时应用中的优势,被广泛用于交通标志识别任务。本文将介绍如何使用YOLOv5进行交通标志检测,并通过Streamlit构建一个UI界面来实时展示检测结果。我们将从数据集准备、YOLOv5模型训练、模型推理到UI界面开发进行详细讲解。
2. 系统架构
交通标志识别系统的核心模块包括:
- 数据集准备:收集并标注交通标志数据集,供YOLOv5训练使用。
- YOLOv5模型训练:使用YOLOv5进行交通标志检测模型的训练。
- 检测过程:利用训练好的YOLOv5模型进行图像或视频的交通标志检测。
- UI界面:通过Streamlit构建Web应用,实时展示检测结果。
3. 数据集准备
3.1 常见的交通标志数据集
为了训练YOLOv5进行交通标志检测,我们需要一个包含交通标志标注的图像数据集。以下是常见的交通标志数据集