1. 引言
车牌检测(License Plate Detection,LPD)是智能交通系统(ITS)、智能停车管理和交通执法中最为重要的技术之一。通过精确、快速地识别车辆的车牌信息,能够有效地管理交通流量、提高停车场效率、增强交通安全。
随着深度学习技术的飞速发展,基于卷积神经网络(CNN)和目标检测框架(如 YOLO 系列)的车牌检测系统已经在实际场景中取得了卓越的表现。YOLOv8 作为 YOLO 系列中最新的版本,结合了 Transformer 机制、动态标签匹配和轻量化设计,能够在复杂光照条件和多场景下实现高效、精确的车牌检测。
2. 车牌检测的挑战
✅ 复杂的光照条件
- 在强光、逆光、阴影和夜间光照不足的情况下,车牌的特征可能会被部分遮挡或模糊化。
✅ 动态背景与遮挡问题
- 在实际交通环境中,车牌可能被其他车辆、行人或路障部分遮挡,增加了检测难度。
✅ 车牌种类和字体多样性
- 车牌的颜色、字体、格式、字符间距在不同国家或地区存在显著差异。
✅ 运动模糊和动态干扰
-
<