1. 引言
1.1 背景
随着智能技术的迅速发展,手势识别作为人机交互(HCI)技术的重要组成部分,已被广泛应用于多个领域,例如虚拟现实(VR)、增强现实(AR)、智能家居、智能驾驶、医疗健康等。手势识别技术通过识别和解析人类的手势动作,实现与设备的互动,而深度学习技术在图像识别领域的优越性为手势识别系统提供了强有力的支持。
传统的手势识别方法依赖于手工特征提取和传统的机器学习算法,难以处理复杂和多变的手势动作。近年来,深度学习技术,尤其是卷积神经网络(CNN)和目标检测算法(如YOLO),被广泛应用于手势识别中,尤其是在动态手势识别任务中,深度学习展现了显著的优势。
在本项目中,我们将使用YOLOv8(You Only Look Once)作为目标检测模型,结合UI界面,搭建一个高效且精确的常见手势识别系统。YOLOv8凭借其高速度和高准确度,成为了实现实时手势检测的理想选择。
1.2 研究意义
本项目旨在实现一个基于YOLOv8的常见手势识别系统,具有以下几个重要应用:
- 智能控制:用户可以通过手势来控制智能家居设备、媒体播放器等,实现无接触操作。
- 增强现实与虚拟现实:在VR和AR环境中,通过手势识别可以提供更加自然的交互体验。
- 无障碍技术:手势识别系统可为行动不便的用户提供便捷的交互