1. 引言
1.1 背景
血细胞检测是医学诊断中不可或缺的一部分,尤其在血液学、免疫学和病理学研究中,血细胞的检测与计数起到了至关重要的作用。传统的血细胞计数方法依赖人工分析,这不仅耗时且容易出现人为误差。因此,开发一种自动化的血细胞智能检测与计数系统,能够显著提高检测精度和效率,减少人工干预,是当前医学研究领域的一个重要课题。
近年来,深度学习,特别是基于卷积神经网络(CNN)的目标检测方法,在医学图像分析中取得了显著的成果。YOLO(You Only Look Once)作为一种快速且高效的目标检测模型,凭借其高精度和实时性,成为了医疗图像分析中不可或缺的工具之一。本系统利用YOLOv8模型,结合图像识别技术,开发了一种用于血细胞智能检测与计数的深度学习系统。
1.2 研究意义
血细胞智能检测与计数系统的研究不仅能够提升医学诊断的自动化水平,还具有以下重要意义:
- 提高检测准确性:深度学习模型能够避免人工计数时的误差,保证检测结果更加精确。
- 减少人工干预:通过自动化检测,减少了人为干预的需要,使得医生可以将更多时间用于其他更为复杂的任务。
- 提升工作效率:相比传统手工计数,自动化系统可以大大提高血细胞计数的速度,缩短诊断时间。
- 可拓展性:该系统可以拓展