1. 引言
随着工业自动化与人工智能的快速发展,深度学习在工业生产中的应用已变得越来越广泛。尤其是在工厂的生产线质量检测、产品分类和缺陷识别等任务中,卷积神经网络(CNN)发挥着重要作用。然而,随着深度学习应用的不断普及,对抗性攻击(Adversarial Attack)问题也逐渐成为一个亟待解决的挑战。为了增强模型的鲁棒性,研究人员提出了许多防御机制。
在本博客中,我们将探讨如何结合 YOLOv10 和 CleverHans 框架,应用于工厂问题的解决。通过使用 YOLOv10 实现高效的工业图像检测,并利用 CleverHans 提供的对抗性攻击防御技术,提升系统在面对对抗性攻击时的鲁棒性。
2. CleverHans 介绍
2.1 CleverHans 框架概述
CleverHans 是一个用于生成和评估对抗性攻击的 Python 库。它提供了多种常用的对抗性攻击方法,并可用于评估机器学习模型在面对对抗样本时的表现。CleverHans 旨在帮助研究人员评估和增强深度学习模型的安全性,尤其是在面对恶意攻击时的鲁棒性。
CleverHans 中常见的攻击方法包括:
- FGSM(Fast G