1. 引言
随着自动驾驶和智能辅助驾驶系统的快速发展,驾驶员状态监测变得尤为重要。尤其是识别驾驶员的异常行为,如饮酒、使用手机等分心行为,能显著提升行车安全,减少交通事故。本篇博客将聚焦“驾驶员行为检测”,利用流行的StateFarm Distracted Driver数据集,结合最新的YOLOv10目标检测算法,构建一个高效准确的驾驶员行为识别系统,并基于Python实现一个简洁易用的UI界面,实现实时行为检测和展示。
2. 问题背景与意义
驾驶员分心是导致交通事故的主要原因之一。根据统计,全球因驾驶分心引发的交通事故占比超过30%。常见的分心行为包括使用手机、饮酒、吸烟、调节车载设备等。通过深度学习技术自动检测这些行为,有助于车辆安全系统及时预警,辅助驾驶员纠正行为,提升道路安全水平。
驾驶员行为检测的挑战:
- 行为多样且细微,动作识别难度大。
- 车内环境光线复杂,拍摄角度不一。
- 实时性要求高,需轻量高效的检测模型。
本项目选用StateFarm分心驾驶数据集,涵盖多种驾驶行为场景,结合YOLOv10的轻量高效特点,适合部署于车载环境。
3. 数据集介绍
3.1 StateFarm Distracted Driver Dataset
StateFarm发布的分心驾驶数据集广泛用于驾驶员行为识别研究,包含约22,4