驾驶员行为检测(饮酒、使用手机)——基于StateFarm分心驾驶数据集与YOLOv10的深度学习实践

1. 引言

随着自动驾驶和智能辅助驾驶系统的快速发展,驾驶员状态监测变得尤为重要。尤其是识别驾驶员的异常行为,如饮酒、使用手机等分心行为,能显著提升行车安全,减少交通事故。本篇博客将聚焦“驾驶员行为检测”,利用流行的StateFarm Distracted Driver数据集,结合最新的YOLOv10目标检测算法,构建一个高效准确的驾驶员行为识别系统,并基于Python实现一个简洁易用的UI界面,实现实时行为检测和展示。


2. 问题背景与意义

驾驶员分心是导致交通事故的主要原因之一。根据统计,全球因驾驶分心引发的交通事故占比超过30%。常见的分心行为包括使用手机、饮酒、吸烟、调节车载设备等。通过深度学习技术自动检测这些行为,有助于车辆安全系统及时预警,辅助驾驶员纠正行为,提升道路安全水平。

驾驶员行为检测的挑战:

  • 行为多样且细微,动作识别难度大。
  • 车内环境光线复杂,拍摄角度不一。
  • 实时性要求高,需轻量高效的检测模型。

本项目选用StateFarm分心驾驶数据集,涵盖多种驾驶行为场景,结合YOLOv10的轻量高效特点,适合部署于车载环境。


3. 数据集介绍

3.1 StateFarm Distracted Driver Dataset

StateFarm发布的分心驾驶数据集广泛用于驾驶员行为识别研究,包含约22,4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值