1. 引言
在现代化工业生产中,质量控制是确保产品可靠性和企业声誉的关键环节。特别是对于印刷电路板(PCB)和精密零件制造,表面缺陷检测直接关系到产品的功能和寿命。传统的人工检测方法不仅效率低下,而且容易因疲劳导致漏检。随着计算机视觉和深度学习技术的发展,基于视觉的自动缺陷检测系统正在逐步取代人工检测,成为工业质量控制的重要手段。
本文将详细介绍如何使用YOLOv8目标检测算法构建一个完整的工业缺陷检测系统,内容包括:
- 缺陷检测数据集的获取与处理
- YOLOv8模型的训练与优化
- 基于PyQt的用户界面开发
- 系统集成与性能评估
文中将提供完整的代码实现,并介绍几个公开可用的工业缺陷检测数据集,帮助读者快速构建自己的缺陷检测系统。
2. 工业缺陷检测数据集
2.1 公开数据集介绍
(1) PCB缺陷数据集
- NEU-DET: 包含6种常见的PCB缺陷(缺失孔、鼠标咬伤、开路、短路、杂散、伪铜),共计1800张图像
- DeepPCB: 包含1500对PCB图像(正常与缺陷配对),涵盖6种常见缺陷
- PKU-Market-PCB: 北京大学发布的PCB数据集,包含1386张图像,标注了6类缺陷