1. 引言
纺织品生产过程中,瑕疵检测是质量控制的关键环节。传统的人工检测方法效率低下且容易受主观因素影响,而基于深度学习的自动化检测技术能够显著提高检测效率和准确性。本文将详细介绍如何使用YOLOv8算法构建一个完整的纺织品瑕疵检测系统,包括数据集准备、模型训练、性能评估以及基于PyQt5的用户界面开发。
2. 相关工作
2.1 纺织品瑕疵检测研究现状
纺织品瑕疵检测技术经历了从传统图像处理到深度学习的演进过程。早期方法主要依赖阈值分割、边缘检测和纹理分析等传统计算机视觉技术。随着深度学习的发展,卷积神经网络(CNN)在瑕疵检测领域展现出显著优势。
2.2 YOLO算法发展历程
YOLO(You Only Look Once)系列算法是目标检测领域的重要里程碑:
- YOLOv1(2016): 开创性的单阶段检测框架
- YOLOv2/YOLO9000(2017): 引入批量归一化、锚框机制
- YOLOv3(2018): 多尺度预测、更好的特征提取网络
- YOLOv4(2020): 引入CSPDarknet、PANet等改进
- YOLOv5(2020): 更高效的实现
- YOLOv6/YOLOv7(2022): 进一步优化架构
- YOLOv8(2023): 最新版本,在精度和速度上取得更好平衡