1. 引言
自动驾驶技术是当前人工智能和计算机视觉领域最热门的研究方向之一,而障碍物检测作为自动驾驶系统的核心组成部分,直接关系到车辆行驶的安全性。本文将详细介绍如何使用YOLOv8目标检测算法构建一个完整的自动驾驶障碍物检测系统,包括数据集准备、模型训练、性能评估以及一个用户友好的UI界面实现。
YOLO(You Only Look Once)系列算法因其出色的实时性能和较高的检测精度,在目标检测领域广受欢迎。YOLOv8作为该系列的最新版本,在精度和速度上都有了进一步提升,非常适合应用于自动驾驶场景中的实时障碍物检测。
本系统将实现以下功能:
- 使用公开自动驾驶数据集训练YOLOv8模型
- 开发一个基于PyQt5的用户界面
- 实现实时视频流检测和单张图片检测功能
- 提供模型性能评估工具
2. 数据集准备
2.1 数据集选择
自动驾驶障碍物检测常用的公开数据集包括:
- KITTI数据集:包含7481张训练图片和7518张测试图片,标注了车辆、行人、自行车等类别
- Cityscapes数据集:包含5000张精细标注的城市街景图片
- BDD100K数据集:包含10万张图片,涵盖不同天气和光照条件
- COCO数据集:通用目标检测数据集,包含80个类别,