1. 引言
随着城市化进程的加快,高层建筑数量激增,高空坠物事件频发,已成为威胁城市公共安全的重大隐患。传统的人工监控方式效率低下且成本高昂,难以实现全天候、全方位的监控覆盖。本文将详细介绍如何利用深度学习技术,特别是YOLOv8目标检测算法,构建一套高效、准确的高空坠物智能预警系统。
高空坠物具有突发性强、破坏力大、责任认定困难等特点。根据相关统计,一个30克的鸡蛋从4楼抛下可致人头皮起包,从18楼抛下可砸破头骨,从25楼抛下则可致人死亡。因此,开发智能化的高空坠物预警系统具有重要的社会意义和应用价值。
2. 技术选型与系统架构
2.1 YOLOv8算法概述
YOLOv8是Ultralytics公司于2023年推出的最新一代目标检测算法,相较于前代YOLOv5,在精度和速度上都有显著提升。其主要改进包括:
- 骨干网络优化:采用更高效的CSP结构,增强特征提取能力
- 无锚框(Anchor-Free)设计:简化检测流程,提高训练稳定性
- 任务解耦头:将分类和回归任务分离,减少任务冲突
- 损失函数改进:使用Distribution Focal Loss提升小目标检测性能
这些特性使得YOLOv8特别适合高空坠物这类小目标检测场景。