1. 引言
随着在线教育的蓬勃发展,智能监考系统已成为教育技术领域的重要研究方向。传统的在线考试监考方式主要依赖人工监控,不仅效率低下,而且难以大规模应用。本文将详细介绍如何利用最新的YOLOv10目标检测算法构建一个完整的智能监考系统,包含算法原理、数据集构建、模型训练和UI界面开发的全过程。
2. 系统概述
2.1 系统功能
本智能监考系统主要实现以下功能:
- 实时检测考生面部和身体姿态
- 识别可疑行为(如使用手机、多人出现、离开座位等)
- 记录异常事件并生成报告
- 提供管理员界面查看监控结果
2.2 技术架构
系统采用前后端分离架构:
- 后端:基于PyTorch的YOLOv10模型
- 前端:PyQt5开发的桌面应用界面
- 数据流:摄像头/视频输入→YOLOv10检测→行为分析→UI展示
3. YOLOv10算法详解
3.1 YOLOv10核心创新
YOLOv10是2023年提出的最新一代YOLO系列目标检测算法,相比YOLOv9有以下改进:
- 一致性匹配策略:消除训练时样本分配不一致问题
- 任