算法基础复盘笔记Day07【搜索与图论】—— Prim、Kruskal、染色体判定二分图、匈牙利算法

❤ 作者主页:欢迎来到我的技术博客😎
❀ 个人介绍:大家好,本人热衷于Java后端开发,欢迎来交流学习哦!( ̄▽ ̄)~*
🍊 如果文章对您有帮助,记得关注点赞收藏评论⭐️⭐️⭐️
📣 您的支持将是我创作的动力,让我们一起加油进步吧!!!🎉🎉

第一章 Prim

一、Prim算法求最小生成树

1. 题目描述

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G = ( V , E ) G=(V,E) G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合, n = ∣ V ∣ n=|V| n=V m = ∣ E ∣ m=|E| m=E

由 V 中的全部 n 个顶点和 E 中 n − 1 n−1 n1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入格式

第一行包含两个整数 n 和 m。

接下来 m 行,每行包含三个整数 u , v , w u,v,w u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

$1≤n≤500,
KaTeX parse error: Expected group after '^' at position 8: 1≤m≤105^̲,
图中涉及边的边权的绝对值均不超过 10000。

输入样例:

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出样例:

6

2. 思路分析

算法流程与 Dijkstra算法相似:

  1. 初始化,将所有点的 d i s t dist dist设为正无穷,第一个点的 d i s t dist dist 值为0,这里的 d i s t dist dist 数组是存储点到集合的距离;
  2. 每次选择距离当前集合距离最短的点,如果该点与集合不连通,表示不存在生成树,则直接 INF,否则,更新权值和 r e s res res,并将该点加入集合中;
  3. 对所有的邻点的距离进行更新操作;
  4. 重复操作2、3,进行 n n n 次迭代。

Prim算法与Dijkstra算法的区别:

  • Dijkstra 算法是更新不在集合中的点离 起点 的距离: dist[j]=min(dist[j], dist[t]+g[t][j])
  • Prim 是更新不在集合中的点离 集合S 的距离: dist[j] = min(dist[j], g[t][j])

3. 代码实现

#include <bits/stdc++.h>

using namespace std;

const int N = 520, INF = 0x3f3f3f3f;

int n, m;
int g[N][N]; //邻接矩阵存储所有的边
int dist[N]; //存储点到集合的距离
bool st[N];

int prime()
{
   
   
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    int res = 0; //所有边的权值和
    
    for (int i = 0; i < n; i ++)
    {
   
   
        int t = -1; //t是用来记录离集合S最近的点到S的距离,t的初始值设置为-1,距离不可能为负,所以第一次就会更新
        for (int j = 1; j <= n; j ++)
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        //判断是否联通,有无最小生成树
        if (dist[t] == INF) return INF;
       
        res += dist[t]; //更新权重和
        
        st[t] = true; //标记加入集合
        
        //更新其他边
        for (int j = 1; j <= n; j ++)
            dist[j] = min(dist[j], g[t][j]); //由于是点到集合的距离,所以是g[t][j],而不是dist[t]+g[t][j]
    }
    return res;
}

int main()
{
   
   
    cin >> n >> m;
    
    memset(g, 0x3f, sizeof g); //初始化邻接矩阵
    
    while (m --)
    {
   
   
        int a, b, c;
        cin >>  a 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java技术一点通

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值