❤ 作者主页:欢迎来到我的技术博客😎
❀ 个人介绍:大家好,本人热衷于Java后端开发,欢迎来交流学习哦!( ̄▽ ̄)~*
🍊 如果文章对您有帮助,记得关注、点赞、收藏、评论⭐️⭐️⭐️
📣 您的支持将是我创作的动力,让我们一起加油进步吧!!!🎉🎉
第一章 Prim
一、Prim算法求最小生成树
1. 题目描述
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
给定一张边带权的无向图 G = ( V , E ) G=(V,E) G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合, n = ∣ V ∣ n=|V| n=∣V∣, m = ∣ E ∣ m=|E| m=∣E∣。
由 V 中的全部 n 个顶点和 E 中 n − 1 n−1 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u , v , w u,v,w u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
数据范围
$1≤n≤500,
KaTeX parse error: Expected group after '^' at position 8: 1≤m≤105^̲,
图中涉及边的边权的绝对值均不超过 10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
2. 思路分析
算法流程与 Dijkstra
算法相似:
- 初始化,将所有点的 d i s t dist dist设为正无穷,第一个点的 d i s t dist dist 值为0,这里的 d i s t dist dist 数组是存储点到集合的距离;
- 每次选择距离当前集合距离最短的点,如果该点与集合不连通,表示不存在生成树,则直接
INF
,否则,更新权值和 r e s res res,并将该点加入集合中; - 对所有的邻点的距离进行更新操作;
- 重复操作2、3,进行 n n n 次迭代。
Prim算法与Dijkstra算法的区别:
Dijkstra
算法是更新不在集合中的点离起点
的距离:dist[j]=min(dist[j], dist[t]+g[t][j])
Prim
是更新不在集合中的点离集合S
的距离:dist[j] = min(dist[j], g[t][j])
3. 代码实现
#include <bits/stdc++.h>
using namespace std;
const int N = 520, INF = 0x3f3f3f3f;
int n, m;
int g[N][N]; //邻接矩阵存储所有的边
int dist[N]; //存储点到集合的距离
bool st[N];
int prime()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
int res = 0; //所有边的权值和
for (int i = 0; i < n; i ++)
{
int t = -1; //t是用来记录离集合S最近的点到S的距离,t的初始值设置为-1,距离不可能为负,所以第一次就会更新
for (int j = 1; j <= n; j ++)
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
//判断是否联通,有无最小生成树
if (dist[t] == INF) return INF;
res += dist[t]; //更新权重和
st[t] = true; //标记加入集合
//更新其他边
for (int j = 1; j <= n; j ++)
dist[j] = min(dist[j], g[t][j]); //由于是点到集合的距离,所以是g[t][j],而不是dist[t]+g[t][j]
}
return res;
}
int main()
{
cin >> n >> m;
memset(g, 0x3f, sizeof g); //初始化邻接矩阵
while (m --)
{
int a, b, c;
cin >> a