文章目录
1.01方程组的几何解释
对于二元方程组:row picture
方程转化为矩阵 * 向量 = 向量的形式,并且二维三维可以用图像几何表示出来(解析几何)
用column picture进行表示(线性组合):
x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] x\begin{bmatrix}2 \\ -1 \\ \end{bmatrix}+y\begin{bmatrix}-1 \\ 2 \\ \end{bmatrix}= \begin{bmatrix}0 \\ 3 \\ \end{bmatrix} \\ x[2−1]+y[−12]=[03]
x=1,y=2,上述是用向量的角度进行求解。
任意两个不共线的非零向量能够表示平面中的任意向量
对于三元方程组:row picture
column picture(向量表示):
x=0,y=0,z=1
A x = b Ax=b Ax=b
是否对于任意b都有上式可解 = 列的线性组合是否能覆盖整个三维(n维)空间
非奇异矩阵/可逆矩阵可达到上面的要求(可逆矩阵被称为非奇异矩阵,因为可逆矩阵的行列式不为0,在数学中如果一个矩阵的行列式为0,则称这个矩阵为奇异矩阵。)
是3个向量都处于同一平面,即维度减一,所以涉及第三维度的向量b无法构造。
对于n个向量也是如果最后消解只有n-1维那也无解(一种平面只能覆盖n维空间的某n-1维平面,最后的求解也只能在这n-1维平面展开)。
方程组的矩阵形式:
A x = b ( A x 看做 A 各列的线性组合 ) Ax=b(Ax看做A各列的线性组合) Ax=b(Ax看做A各列的线性组合)
2.02矩阵消元
x + 2 y + z = 2 3 x + 8 y + z = 12 4 y + z = 2 A = [ 1 2 1 3 8 1 0 4 1 ] x+2y+z=2\\ 3x+8y+z=12\\ 4y+z=2\\ A=\begin{bmatrix}1 & 2 & 1 \\3 & 8 & 1 \\0 & 4 &1 \end{bmatrix} x+2y+z=23x+8y+z=124y+z=2A= 130284111
消元
增广矩阵:Ab
回代(也就是加入b进行求解)
方程从上往下消元,从下往上回代求解
消元矩阵:
由上式可知,我们把左边的矩阵(初等矩阵)当成3个1*3的行向量,右边的结果的第一行=左边第一行的第一个数 * 中间第一行 + 左边第一行的第二个数 * 中间第二行 + 左边第一行的第三个数 *中间第三行,所以结果为:1,0,0,以此类推第二行为-3,1,0(-3 * 中间第一行+1 * 中间第二行),第三行为0,0,1
E 21 表示初等矩阵第二行第一个位置发生了变换:变为 0 E_{21}表示初等矩阵第二行第一个位置发生了变换:变为0 E21