Orca: FSS-based Secure Training and Inference with GPUs

1.Abstract

端到端系统ORCA:

  • 加速基于 FSS 的使用 GPU 的 2PC 协议的计算。
  • 新的基于 FSS 的 2PC 协议
  • 提供了第一个用于随机截断的安全协议,并在此基础上提供了对具有端到端安全性的训练的首次评估。
  • ORCA 在 CIFAR-10 上具有 4% 更高的准确性,98 倍更少的通信,并且速度提高了 26 倍。
  • 对于安全的 ImageNet 推断,ORCA 实现了 VGG-16 和 ResNet-50 的亚秒延迟,并且比最先进技术快 8-103 倍。

2.Accelerating FSS on a GPU

2.1 Accelerating FSS-based compute on GPU

2.1.1 Faster AES computation (AES)

在这里插入图片描述

  • AES 加密: AES 需要反复查找预先计算的查找表(lookup table)

  • 常量缓存(constant cache): GPU 中的常量缓存用于存储只读数据,在每个流处理器(SM)中都有一份副本。访问常量缓存通常很快,适合并行计算。

  • 访问模式要求: 常量缓存的性能依赖于 GPU 线程的访问模式。如果所有线程在同一时间访问同一个地址,性能非常高。如果不同线程访问不同地址,访问会被序列化,导致性能下降,甚至导致计算停滞(stall)。

问题分析:

  • 在 AES 加密过程中,不同的 GPU 线程会访问查找表中的不同索引。
  • 由于查找表存储在常量缓存中,当不同线程访问不同地址时,这些访问会被序列化。
  • 这种序列化会导致访问延迟(stall),从而影响整体性能。

解决方案:

1.查找表复制策略:

  • 每个 warp 复制查找表: 每个 SM(流处理器)中的 warp(通常为 32 个线程)都拥有一份查找表的副本。这意味着在每个
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值