一、K-means算法概述
K-means算法是一种非常经典的聚类算法,其主要目的是将数据点划分为K个集群,以使得每个数据点与其所属集群的中心点(质心)的平方距离之和最小。这种算法在数据挖掘、图像处理、模式识别等领域有着广泛的应用。
二、K-means算法的基本原理
K-means算法的基本原理相对简单直观。算法接受两个输入参数:一是数据集,二是用户指定的集群数量K。算法的输出是K个集群,每个集群都有其中心点以及属于该集群的数据点。
K-means算法的执行过程如下:
- 初始化:随机选择K个点作为初始集群中心(质心)。
- 分配数据点到最近的集群:对于数据集中的每个点,计算其与各个质心的距离,并将其分配到距离最近的质心所对应的集群中。
- 重新计算质心:对于每个集群,计算其内所有数据点的平均值,并将该平均值设为新的质心。
- 迭代优化:重复步骤2和3,直到满足某个终止条件(如质心的变化小于某个阈值,或者达到最大迭代次数)。
图解说明: