详解 C++ 实现K-means算法

本文详细介绍了K-means算法的基本原理、数学表达和C++实现过程,包括数据结构定义、辅助函数(距离计算和质心计算)、K-means算法主体(初始化、分配点、重新计算质心和检查收敛性)以及算法的优缺点。同时提供了完整的C++源代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、K-means算法概述

K-means算法是一种非常经典的聚类算法,其主要目的是将数据点划分为K个集群,以使得每个数据点与其所属集群的中心点(质心)的平方距离之和最小。这种算法在数据挖掘、图像处理、模式识别等领域有着广泛的应用。

二、K-means算法的基本原理

K-means算法的基本原理相对简单直观。算法接受两个输入参数:一是数据集,二是用户指定的集群数量K。算法的输出是K个集群,每个集群都有其中心点以及属于该集群的数据点。

K-means算法的执行过程如下:

  1. 初始化:随机选择K个点作为初始集群中心(质心)。
  2. 分配数据点到最近的集群:对于数据集中的每个点,计算其与各个质心的距离,并将其分配到距离最近的质心所对应的集群中。
  3. 重新计算质心:对于每个集群,计算其内所有数据点的平均值,并将该平均值设为新的质心。
  4. 迭代优化:重复步骤2和3,直到满足某个终止条件(如质心的变化小于某个阈值,或者达到最大迭代次数)。

图解说明:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲨鱼编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值